T_{ψ} Spaces and ψ - Normality

Khairy S. Tawfik

Faculty of education- Azzytuna university

khairyst@gmail.com

تاريخ الاستلام 2023/10/25

الملخص تم في هذا البحث تطبيق مجموعات ψ المغلقة لتعريف فئة جديدة من الفضاءات والتي تم تسميتها فضاءات T_{ψ} وتقع بين فضاءات T_b وفضاءات دsemi- $T_{1/3}$ ، كما تم در اسة بعض خصائصها وعلاقتها بالفضاءات ψ ، T_{ψ} وتقع بين فضاءت ملى ذلك، يتم هنا تقديم ودر اسة نوع جديد من الناظمية تُسمى ψ-normal spaces.

Abstract

Applying ψ -closed sets a new class of spaces namely, T_{ψ} spaces is introduced which is properly placed in between T_b and semi- $T_{1/3}$, and studying the relationships between T_b , $T_{1/2}^*$, T_c spaces and T_{ψ} spaces. Moreover, a new type of normality is introduced and studied here, that is the ψ -normal spaces.

Keywords: ψ -closed set, quasi ψ -closed map, $T_{1/2}^*$ spaces, T_{ψ} spaces, ψ -normal spaces.

Introduction

N. Levine (Levine N., 1963) introduced semi-open sets, and in (Levine N., 1970) he generalized the concept of closed sets to generalized closed sets. Bhattacharya and Lahiri (Bhattacharya & Lahiri, 1987) generalized the concept of closed sets to semi-generalized closed sets. S.P.Arya and T.Nour (Arya & Nour, 1990) defined gs-closed sets in 1990. M.V. Kumar (Kumar, M.K.R.S. Veera, 2000) introduced the ψ -closed sets and he defined the semi- $T_{1/3}$ space as an application of ψ -closed sets. In (Tawfik, 2007) the classes of quasi ψ -closed sets maps, and strongly ψ -closed maps have been defined by using ψ -closed sets

due to Kumar. In 1993 Devi et.al (Devi, Maki, & Balachandran, 1993) defined T_b spaces. M.V. Kumar (Kumar, M.K.R.S. Veera, 2000) introduced g*-closed sets and new classes of maps namely g*-continuous maps, g*-irresolute maps and pre- g*-closed maps. Applying g*-closed sets, in (Kumar, M.K.R.S. Veera, 2000) four new spaces namely, $T_{1/2}$ * spaces, $*T_{1/2}$ spaces, T_c spaces and $_{\alpha}T_c$ spaces are introduced. Applying ψ -closed sets a new class of spaces namely, T_{ψ} spaces is introduced here, which is properly placed in between T_b and semi- $T_{1/3}$, and studying the relationships between T_b , $T_{1/2}$ *, T_c spaces and T_{ψ} spaces. Moreover, a new type of normality is introduced and studied here, that is the ψ -normal spaces.

1. Preliminaries

Throughout the present paper, spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated. For a subset *A* of a space *X*, cl(A) and int(A) denote the closure and the interior of *A* respectively. *Definition 2.1:* –

A subset A of a topological space X is called

1) a *semi-open* set (Levine N., 1963) if $A \subseteq cl(int(A))$ and a *semi-closed* set if int $(cl(A)) \subseteq A$.

Definition 2.3: –

A subset A of a topological space X is called

- 1) a generalized closed set (briefly g-closed) (Levine N. , 1970) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 2) a *semi-generalized closed* set (briefly *sg-closed*) (Bhattacharya & Lahiri, 1987) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in X.
- 3) a generalized semi-closed set (briefly gs-closed) (Arya & Nour, 1990)if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 4) a g*-closed set (Kumar, M.K.R.S. Veera, 2000) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.
- 5) a ψ -closed set (Kumar, M.K.R.S. Veera, 2000) if scl(A) $\subseteq U$ whenever A $\subseteq U$ and U is a sg-open set of X.

The class of all closed (resp. semi-closed) subsets of a space X is denoted by C(X) (resp. SC(X)). The intersection of all semi-closed sets containing a subset A of X is called the semi-closure of A and is denoted by scl(A). The class of all g-closed (resp. gs-closed, sg-closed, g*-closed) sets of a space X is denoted by GC(X) (resp. GSC(X), SGC(X), G*C(X)). The complement of g-closed (resp. gs-

closed, sg-closed, g*-closed, ψ -closed) sets is g-open (resp. gs- open, sg- open, g*- open, ψ -open) sets. The class of all ψ -closed sets of a space X is denoted by $\Psi C(X)$. The intersection of all ψ -closed sets containing a subset A of a space X is called a ψ -closure and is denoted by $\psi cl(A)$. The class of ψ -closed sets properly contains the class of semi-closed sets, and thus contains the class of closed sets. Also, the class of ψ -closed sets is properly contained in the class of sg-closed sets, and contained in the class of gs-closed sets. Theorem 3.3 of (Kumar, M.K.R.S. Veera, 2000).

Definition 2.2: -

A function $f: X \to Y$ is said to be

- 1) *continuous* (Joshi, 1983) if $f^{-1}(V)$ is open set of X for every open set V of Y.
- 2) *semi-continuous* (Levine N. , 1963) if $f^{-1}(V)$ is a semi-open set of X for every open set V of Y.
- 3) ψ -continuous (Kumar, M.K.R.S. Veera, 2000) if $f^{-1}(V)$ is a ψ -closed set of X for every closed set V of Y.
- 4) g^* -continuous (Kumar, M.K.R.S. Veera, 2000) if $f^{-1}(V)$ is a g^* -closed set of X for every closed set V of Y.
- 5) ψ -irresolute (Kumar, M.K.R.S. Veera, 2000) if $f^{-1}(V)$ is a ψ -closed set of X for every ψ -closed set V of Y.
- 6) g^* -irresolute (Kumar, M.K.R.S. Veera, 2000) if $f^{-1}(V)$ is a g^* -closed set of X for every g^* -closed set V of Y.
- 7) *closed* (Joshi, 1983) if f(V) is closed set of Y for every closed set V of X.
- 8) quasi ψ -closed (Tawfik, 2007) if f(V) is closed set of Y for every ψ -closed set V of X.
- 9) ψ -closed (Tawfik, 2007) if f(V) is ψ -closed set of Y for every closed set V of X.
- 10)*strongly* ψ -*closed* (Tawfik, 2007) if f(V) is ψ -closed set of Y for every ψ closed set V of X.
- 11)*pre-g*-closed* (Kumar, M.K.R.S. Veera, 2000) if *f*(*V*) is a g*-closed set of *Y* for every g*-closed set *V* of *X*.

Definition 2.3: –

A topological space X is said to be

- (1) a $T_{1/2}$ space (Levine N., 1970) if every g-closed set in it is closed.
- (2) a semi- $T_{1/2}$ space (Bhattacharya & Lahiri, 1987) if every sg-closed set in it

is semi-closed.

- (3) a *semi-T*_{1/3} space (Kumar, M.K.R.S. Veera, 2000) if every ψ -closed set in it is semi-closed.
- (4) a T_b space (Devi, Maki, & Balachandran, 1993) if every gs-closed set in it is closed.
- (5) a T_d space (Devi, Maki, & Balachandran, 1993) if every gs-closed set in it is g-closed.
- (6) $T_{1/2}^*$ space (Kumar, M.K.R.S. Veera, 2000) if every g*-closed set in it is closed.
- (7) T_c space (Kumar, M.K.R.S. Veera, 2000) if every gs-closed set in it is g*-closed.

Theorem 2.1: - (Kumar, M.K.R.S. Veera, 2000)

Every T_b space is a $T_{1/2}^*$ space.

Theorem 2.2: - (Kumar, M.K.R.S. Veera, 2000)

Every T_b space is a T_c space but not conversely.

Theorem 2.3: - (Kumar, M.K.R.S. Veera, 2000)

A space X is a T_b space if and only if it is a T_c and a $T_{1/2}$ * space.

Theorem 2.4: -

Every T_b space is a semi- $T_{1/3}$ space.

Proof:

Let A be a ψ -closed set of space X, hence it is a gs-closed set (Kumar, M.K.R.S. Veera, 2000) then it is closed since X is a T_b space. So, A is a semiclosed set since every closed set is semi-closed.

Theorem 2.5: - (Kumar, M.K.R.S. Veera, 2000)

Every semi- $T_{1/2}$ space is a semi- $T_{1/3}$ space.

T_{ψ} Spaces

By applying ψ -closed set we define a new class of spaces

Definition 3.1: –

A topological space X is said to be T_{ψ} space if every ψ -closed set in it is closed.

Theorem 3.1: -

Every T_b space is a T_{ψ} space.

Proof:

Let *A* be a ψ -closed set in space *X*, then it is a gs-closed set, hence it is closed since *X* is a T_b space.

The following example shows that the converse of the above theorem is not true in general.

Example 3.1: -

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{b, c\}\}$. X is T_{ψ} space but not a T_b space since $\{a, b\}$ is gs-closed but not closed.

By theorem 3.1 and theorem 2.4 we get the following

Theorem 3.2: -

Every T_c and a $T_{1/2}^*$ space is T_{ψ} space.

Remark:

 T_{ψ} ness is independent from T_{c} ness as it can be seen from the following

examples.

Example 3.2: -

Let *X* as in the example 2.1. *X* is not T_c space since {a,b} is gs-closed but not g*-closed, whenever it is T_{ψ} space.

Example 3.3: -

Let $X = \{a, b, c, d\}, \tau = \{\phi, X, \{b, c\}, \{a, b, c\}, \{b, c, d\}\}$. X is T_c space but not a T_{ψ} space since $\{a, b, d\}$ is ψ -closed set but not closed set.

Theorem 3.3: -

Every T_{ψ} space is a semi- $T_{1/3}$ space.

Proof:

Let A be a ψ -closed set in a T_{ψ} space X, then it is a closed set hence is semiclosed.

The following example shows that the converse of the above theorem is not true in general.

Example 3.4: -

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}, \{a, c\}\}$. X is semi- $T_{1/3}$ space but it is not a T_{ψ} space since $\{c\}$ is ψ -closed set but it is not a closed set.

Remark:

508

 T_{ψ} ness is independent from semi- $T_{1/2}$ ness as it can be seen from the following examples.

Example 3.5: -

Let X as in the example 2.1. X is not semi- $T_{1/2}$ space since {b} is sg-closed but not semi-closed, whenever it is T_{ψ} space.

Example 3.6: -

Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a\}\}$. X is semi- $T_{1/2}$ space but not a T_{ψ} space since $\{b\}$ is ψ -closed set but not closed set.

Theorem 3.4: -

Every T_d and $T_{1/2}$ space is a T_{ψ} space.

Proof:

Since every ψ -closed set is gs-closed (Kumar, M.K.R.S. Veera, 2000), hence is g-closed set because of T_d property, and hence is closed because of $T_{1/2}$ property.

Therefore T_{ψ} property is satisfied.

By virtue of theorem 3.3 and [theorem 4.4 (Kumar, M.K.R.S. Veera, 2000)] we can characterize the T_{ψ} spaces as follows

Theorem 3.5: -

For the topological space X the following conditions are equivalent

- 1) X is T_{ψ} space.
- 2) Every singleton of *X* is either sg-closed or semi-open.
- 3) Every singleton of *X* is either sg-closed or open.

ψ -normal Spaces

Definition 4.1: –

A topological space X is said to be ψ -normal if for every two disjoint closed sets A, B there exist two disjoint ψ -open sets U, V such that $A \subseteq U$ and $B \subseteq V$.

Theorem 4.1: -

Let *X* be ψ -normal. Then for each closed set *A* and each open set *B* containing *A* there exists a ψ -open set *G* such that $A \subseteq G \subseteq scl G \subseteq B$. *Proof:*

Let $A \subseteq X$ be a closed set and $B \subseteq X$ be an open set such that $A \subseteq B$. Since X is ψ -normal then there exist two disjoint ψ -open sets G and H such that $A \subseteq G$

and $X \setminus B \subseteq H$, i.e. $X \setminus H \subseteq B$ and since *G* and *H* are disjoint then $G \subseteq X \setminus H$ which is ψ -closed and so, we have $A \subseteq G \subseteq X \setminus H \subseteq \psi cl(G) \subseteq scl(G) \subseteq B$. This completes the proof.

Theorem 4.2: -

Let *X*, *Y* two topological spaces. If *X* is ψ -normal space and $f: X \rightarrow Y$ is continuous strongly ψ -closed bijection, then *Y* is ψ -normal also. *Proof:*

Let *A* and *B* are two disjoint closed sets of *Y* then $f^{-1}(A)$ and $f^{-1}(B)$ are two disjoint closed sets of *X*, then there exist two disjoint ψ -open sets *U* and *V* such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$, so that $A \subseteq f(U)$ and $B \subseteq f(V)$ where f(U) and f(V) are disjoint ψ -open sets of *Y*.

Theorem 4.3: -

If $f: X \to Y$ is closed ψ -irresolute injection of a topological space X to a ψ normal space Y, then X is ψ -normal.

Proof:

Let A and B are two disjoint closed sets of X then f(A) and f(B) are two disjoint closed sets of Y. Since Y is ψ -normal then there exist two disjoint ψ -open sets U and V such that $f(A) \subseteq U$ and $f(B) \subseteq V$, so that $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$ where $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint ψ -open sets of X.

References

- Abd El-Monsef, M. E., Mahmoud, R. A., & El-Deeb, S. N. (1983). β-open sets and βcontinuous mappings. *Bull. Fac. Assiut Univ.*, *12*, pp. 77-90.
- Andrijevic, D. (1986). Semi-preopen sets. Mat. Vesnik, 38(1), pp. 24-32.
- Arokiarani, I., Balachandran, K., & Dontchev, J. (1999). Some characterizations of gpirresolute and gp- continuous maps between topological spaces. *Mem. Fac. Sci. kochi Univ. Ser.A. Math.*, 20, pp. 93-104.
- Arya, S. P., & Nour, T. (1990). Characterizations of s-normal spaces. *Indian J. Pure Appl. Math.*, 21(8), pp. 717-719.
- Bhattacharya, P., & Lahiri, B. K. (1987). Semi-generalized closed sets in topology. *Indian J. Math.*, 29(3), pp. 375-382.
- Devi, R., Maki, H., & Balachandran, K. (1993). Semi-generalized closed maps and generalized closed maps. *Mem. Fac. Sci. Kochi Univ. Ser. A. Math.*, 14, pp. 41-54.
- Dontchev, J. (1995). On generalized semi-preopen sets. *Mem. Fac. Sci. kochi Ser.A. Math., 16*, pp. 35-48.

Joshi, K. D. (1983). Introduction to general topology. New Delhi: Wiley Eastern Ltd.

Kumar, M. V. (2000). Between closed sets and g-closed sets. *Mem. Fac. Sci. Kochi Univ. Math.*, 21, pp. 1-19.

Kumar, M. V. (2000). Between semi-closed sets and semi-preclosed sets. *Rend. Istit. Mat. Univ. Trieste, XXXII*, pp. 25-41. Retrieved from http://www.angelfire.com/ca5/veerakumar/psiclosed.htm

Kumar, M.K.R.S. Veera. (2000). Between closed sets and g-closed sets. *Mem. Fac. Sci. Kochi Univ. Math.*, 21, pp. 1-19.

Kumar, M.K.R.S. Veera. (2000). Between semi-closed sets and semi-preclosed sets. *Rend. Istit. Mat. Univ. Trieste, XXXII*, pp. 25-41. Retrieved from http://www.angelfire.com/ca5/veerakumar/psiclosed.htm

Levine, N. (1963). semi-open sets and semi-continuity in topological spaces. *The American Mathmatical Monthly*, 70(1), pp. 36-41.

Levine, N. (1970). Generalized closed sets in topology. *Rend. Circ. Math. Palermo*, 19(2), pp. 89-96.

Maki, H., Umehara, J., & Noiri, T. (1996). Every topological space is pre-T1/2. *Mem. Fac. Sci. Kochi Univ.Ser.A. Math.*, 17, pp. 33-42.

Mashhour, A. S., Abd El-Monsef, M. E., & El-Deeb, S. N. (1982). On pre-continuous and weak pre-continuous mappings. *Math. and Phys. Soc. Egypt*, pp. 47-53.

Njastad, O. (1965). On some classes of nearly open sets. *Pacific J. Math.*, 15, pp. 961-970.

Tawfik, K. S. (2007). *images and preimages of some topological spaces under -closed maps*. Al-zautouna university. Al-zytouna Univ.