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ABSTRACT:
Stabilizing and controlling unstable discrete linear delay systems present

significant challenges, primarily due to the destabilizing effects of time delays.
This paper explores the application of two advanced control techniques which are
pole placement and the Lyapunov-Krasovskii functional method, to achieve
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stability in such systems. The pole-placement method is used to adjust the
system’s closed-loop dynamics by placing poles within desired locations, ensuring
stability and meeting performance specifications. In parallel, the Lyapunov-
Krasovskii functional method offers a robust framework for delay-dependent
stability analysis by constructing a functional that decreases along system
trajectories. This dual approach leverages the strengths of both precise pole
configuration and delay-aware Lyapunov methods, addressing both stability and
control in discrete-time delay systems. Numerical simulations demonstrate the
effectiveness of these techniques, showing improved stability and resilience
against delay-induced oscillations and instability. The results confirm that
combining pole-placement with Lyapunov-Krasovskii functionals provides a
comprehensive solution for controlling discrete linear delay systems.

Keywords: Discrete Linear Delay Systems, Time Delays, Stabilization, Control
Theory, Pole Placement, Lyapunov-Krasovskii Functionals, State Feedback
Control.

I. INTRODUCTION
Combining the pole-placement method with the Lyapunov-Krasovskii functional

(LKF) method can provide a comprehensive and robust solution for controlling
discrete linear delay systems. Discrete linear delay systems are a type of dynamic
system in which time delays in feedback or state information can lead to instability
or reduced performance, especially in systems that are already unstable. These
systems are commonly found in various fields, including networked control
systems, economic models, and processes with feedback delays. Time delays add
complexity to both stability analysis and control design, as they can move system
poles or eigenvalues into regions that cause oscillations or uncontrolled growth in
system behavior [1], [2] and [3]. Thus, effective stabilization and control methods
are critical for maintaining stability and achieving desired performance in these
systems.

Traditional stabilization methods for delay systems often involve state feedback
or proportional-derivative (PD) controllers. However, these approaches may not
fully address the specific challenges that delays introduce, particularly in discrete-
time systems, where delays can worsen instability [4]. To overcome these issues,
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advanced techniques like the pole-placement method and the Lyapunov-
Krasovskii functional (LKF) method have shown effectiveness.

The pole-placement method provides a direct way to influence system dynamics
by placing the closed-loop poles in targeted locations, typically within the unit
circle in discrete systems to ensure stability. By choosing appropriate feedback
gains, this method allows for control over the transient response, such as setting
the speed of convergence and damping [5]. However, pole placement alone may
not ensure stability in systems with large or variable delays, as it lacks delay-
specific considerations. Meanwhile, the Lyapunov-Krasovskii functional method
offers a robust framework for stability analysis that accounts for delays. By
creating a Lyapunov functional that includes delay terms, the LKF method allows
for stability conditions that directly consider the effect of delays. This approach
ensures robustness to delay and provides a systematic method to confirm stability
in systems with complex delay dynamics.

According to [1], [9], [10] and [11], combining the pole-placement method with
the Lyapunov-Krasovskii functional method offers a thorough solution for
controlling discrete linear delay systems. This combined approach allows precise
control over system dynamics and delivers robust stability assurances despite
delays. In this framework, pole placement is used to establish desired dynamic
characteristics, while the LKF method is applied to verify and improve stability
relative to delay effects. This methodology takes advantage of both techniques,
creating a practical and effective solution for stabilizing and controlling unstable
discrete linear delay systems. In this paper, we explore the integration of pole-
placement and Lyapunov-Krasovskii functional methods, presenting a systematic
approach to stabilizing and controlling discrete linear delay systems. Numerical
simulations are conducted to validate the proposed approach, demonstrating its
effectiveness in achieving stability and robustness in systems impacted by time
delays. Many researchers have focused on this area, producing valuable and
actionable results. In [6], In international Journal of Robust and Nonlinear Control,
in 2014, Zhang, L., & Liu, X. present "Pole placement control for discrete-time
delay systems with uncertain delays.” In [7], Liu, Q., & Zhang, W. Introduce
"Stability analysis and stabilization of time-delay systems with a Lyapunov-
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Krasovskii functional approach.” [8] in 2016, Fridman, E., & Shaked, U. Present
"Robust pole-placement controller design for systems with delays.” The rest of the
paper is structured as follows: Section Il provides the principle of stability in
discrete linear systems. This section provides an in-depth explanation of the
principles underlying the pole-placement method combined with the Lyapunov-
Krasovskii functional (LKF) approach. Section Il provides a comprehensive
analysis and discussion of the outcomes derived from this study, as showcased in
the simulation and results section. Section IV summarizes the conclusions, while
Section V outlines potential directions for future work. Finally, Section VI lists the
references.

Il. THE PRINCIPLE OF STABILITY IN DISCRETE LINEAR SYSTEMS
The stability of discrete linear delay systems pertains to how the system behaves
over time, especially how its state changes in response to initial conditions or
external inputs. A system is considered stable if its state stays within bounds, and
in the case of asymptotic stability, it should eventually converge to an equilibrium
point (usually the origin) as time progresses. In systems with time delays, stability
becomes more intricate because delays introduce an extra dynamic that can affect
the system's evolution, potentially leading to instability, oscillations, or
divergence if not carefully managed. For discrete-time delay systems, stability is
typically assessed by examining the positions of the system’s poles (or
eigenvalues) and how delays impact the system's behavior. Delays in feedback or
state measurements can displace the system'’s poles into unstable regions, causing
undesirable outcomes like oscillations, divergence, or erratic behavior. In general,
the concept of stability of discreate linear systems can be expressed in the
following:

1.Delay-Dependent Stability:

The stability of a delay system often depends on the magnitude of the delay. A
small delay might not significantly affect stability, while a large delay could
destabilize the system. Stability conditions that depend on the size of the delay are
called delay-dependent stability criteria. These criteria can help determine the
maximum allowable delay before the system becomes unstable.

2.Asymptotic Stability:

A system is asymptotically stable if, for any initial condition, the state of the
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system will eventually approach zero as time progresses. For discrete-time
systems with delays, asymptotic stability is often determined by analyzing the
system’s eigenvalues. If the poles of the system’s closed-loop transfer function lie
strictly inside the unit circle in the complex plane, the system is stable.
3.Lyapunov Stability:
This refers to a system where small disturbances in the state do not lead to
unbounded growth. In delay systems, a Lyapunov-Krasovskii functional is often
used to analyze stability by constructing a function that decreases over time,
thereby proving that the system's state will not diverge.
4.Instability and Oscillations:
Time delays in a system can lead to instability, where the system's state grows
without bound over time. This can occur if the system poles are outside the unit
circle, or the delay causes the poles to move into regions that lead to oscillatory or
divergent behavior.
The mathematical form of discrete system can be written as:
x(n+1) =Ax(n) + Bx(n — 1) 1)
where:

« x(n) is the state of the system at time step n,

« A and B are system matrices,

o 1tis the delay term,

o x(n — 1) represents the state at a delayed time step n — 7.
In the reminder of this section, we present in detail two methods that can work in
this area which are the pole-placement method and the Lyapunov-Krasovskii
method, and how can combining them to produce robust solution for controlling
discrete linear delay systems.
A. Pole-Placement Method
The pole-placement method is an effective control technique for stabilizing and
managing linear systems by setting the closed-loop poles at specific desired
positions. In discrete-time systems, stability is ensured when the system's poles
are located within the unit circle in the complex plane. However, when time delays
are present, the control design becomes more challenging, as delays can push poles
outside the unit circle, leading to instability. While the pole-placement method can
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be adapted for systems with delays, it requires careful consideration of how these
delays affect the pole locations.

The main idea of the pole-placement method is to create a feedback control law
that positions the closed-loop poles at specific locations, allowing for control over
the system's dynamics, including its stability and transient response. For discrete
delay systems, this involves:

1. Selecting desired pole locations: These are chosen to ensure that all poles lie
within the unit circle (ensuring stability) and to achieve specific dynamic
characteristics, such as target damping and response speed.

2. Designing the feedback control gain: By applying state feedback, the
control law is constructed to shift the closed-loop system poles to the desired
locations. The control law generally takes the form:

u(n) = —Kx(n) — Kd x(n — 1), (2)
where K and Kd are feedback gain matrices designed to shift the poles to desired
locations, and 7 is the time delay.

3. Considering the effect of delay on poles: In delay-affected systems, delays
can add new poles or alter existing ones, requiring careful adjustments in the
feedback design. To ensure robust stability under these conditions, delay-
dependent methods, like Lyapunov-Krasovskii functionals, are often
integrated with pole placement, more details van be found in [12], [13].

Example (1)

Consider a simple discrete-time system with a single delay in state feedback,

represented by:

x(n+1)=05x(n)+0.2x(n—1) + u(n) (3)

Based on the numerical values of Equation (3), the eigenvalues of the system may

fall outside the unit circle, indicating instability. To address this issue, the

following steps should be taken:

1. Determine the desired pole locations: Ensure the system's poles are
positioned within the unit circle. For this example, setting the poles at
0.30.30.3 can achieve asymptotic stability.

2. Calculate the feedback gains K and K,;: Design these gains using the
feedback control law.
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Recall the feedback control law in Equation (2) to implement the designed

feedback gains effectively.

u(n) = —Kx(n) — K; x(n — 1), 4)

the values of both K and K,; should be chosen to ensure that the closed-loop pole

is within the desired location, which is 0.3 in our case. So, Equation (3), can be
written as

x(n+1)=(05-02K)x(n)+(0.2—-02K;) x(n—1) (5)

Solving Equation (5) for K and K, that make the system pole at 0.3, we get the

values of K and K, are 0.4 and 0.1 respectively.

3. Verification of Stability and System Dynamics: After updating the system
variables with the newly calculated values, it is essential to confirm that the
system remains stable. These adjustments should ensure that any oscillations
caused by the delay are progressively damped over time, leading to a stable
response.

B. Lyapunov-Krasovskii method

The Lyapunov-Krasovskii functional (LKF) method is a robust mathematical

approach designed to analyze and guarantee the stability of systems affected by

time delays. Unlike conventional Lyapunov functions, which focus solely on the
system's current state, the LKF method incorporates the state’s history into its
formulation, accounting for the impact of delays.

This technique is especially effective for systems where time delays significantly

influence the dynamics, potentially leading to instability. By providing delay-

dependent stability criteria, the LKF method ensures robustness and reliable
performance in the presence of delays.

Steps of the Lyapunov-Krasovskii Method

1. System Representation: Reconsider a discrete linear delay system
represented in Equation (1).

2. Constructing the Lyapunov-Krasovskii Functional: Define a functional
V(n) that depends on both the current state x(n) and its delayed state x(n —
T):

V(n) = x(m)"Px(n) + X7, x(ND"Q x()), (6)

Equation (6) should verify the following two assumptions.
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Assumption (1): Matrices P and Q are positive semi-definite i.e P > 0 and Q >

0.

Assumption (2): The summation term captures the influence of the delay.

3. Stability Condition: The system is stable if the functional V(n) decreases
over time:

AV(n) =V(n+1)—-V(n) <0, (7

then by substituting the system dynamics into V(n + 1), stability conditions are

formulated in terms of the system matrices A and B, as well as the delay t. These
conditions are typically represented as Linear Matrix Inequalities (LMIs), which
can be efficiently solved using numerical methods.

4. Control Law Design: To stabilize the system, a state-feedback control law
u(n) = —K x(n) or a delay-dependent control law can be introduced. The
control gains K are designed to ensure that the Lyapunov-Krasovskii
functional satisfies the stability condition. More explanation can be found in
[13], [14] and [15].

Example (2)

Consider the system described in Equation (8), where the goal is to design a

stabilizing control law using the Lyapunov-Krasovskii functional (LKF) method.

x(n+1) = [i ;9125] x(n) + [; '.021] x(n—1) + [2] u(n) (8)
Solution

1. The 1% step is to define the LKF, using the function V(n) in Equation (6).

2. Compute AV (n):

AV(n) =V(n+1)—-V(n) 9)
3. Calculate the matrices P and Q as following:

P—ATPA—-Q —ATPB

[ —BTPA —BTPB +Q >0 (10)

The resulted obtained for this example are:

_[6.057 —0.0159 _ [~
P=1"0150 4886 and 0=["
4. Design a control law using u(n) = —K x(n).
Finally, the feedback gain K is:

K =[-0.0005 —0.2046]

0.6775 —1.4993
1.4993 -0.9287

Azzaytuna University Journal (52) Dce. 2024



Stabilization and control of unstable discrete linear delay systems using..(417 -431)

5. Verification of stability and system dynamics. After calculating the gain K
and adjusting the system variables using the control law, the system becomes
stable. Then, the state trajectories are simulated for N steps, including the
delayed effect, to observe the system's behavior under the designed control
law.

6. The last step is to plot x(n) and x(n — 1) as seen in figure (2).

C. Combining the pole-placement method with the Lyapunov-Krasovskii
Functional (LKF) method to stabilize an unstable discrete linear delay
system.
In this section, we work with a combined method consisting of pole-placement
and LKF. The process involves designing a stabilizing feedback control law to
ensure the system's poles lie within the unit circle while verifying stability using
the LKF approach.
Example (3)
Consider the following unstable system,

x(n+1) = [112 83] x(n) + [83 8% x(n—1) + [(1)] u(n) (11)

The system in Equation (11) is unstable because some eigenvalues of the matrix
A are outside the unit circle. We stabilize the system using a combined Pole
Placement and Lyapunov-Krasovskii Functional approach.
Approach:

1. Design feedback control using pole - placement:

Using a control law u(n) = —Kx(n) such that the closed-loop poles are moved
to desired stable locations within the unit circle.

2. Verify stability using LKF:

Construct a Lyapunov-Krasovskii functional to ensure delay-dependent stability
of the controlled system.

3. Plot State Trajectories:

Compare the system's unstable states (without control) and stable states (with
control). The results obtained for this system are presented in the next section
simulation results.
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I1l.  SIMULATION AND RESULTS

The simulation investigates the stabilization of an unstable discrete linear delay

system using three approaches: pole-placement, Lyapunov-Krasovskii

functional (LKF) method, and their combination. Each method is applied to the
same system to analyze and compare their performance in stabilizing the system
and achieving desired dynamics.

« Pole-Placement Method: This method directly manipulates the system's poles
to ensure they lie within the unit circle. The feedback gains are calculated to
achieve stability, with results showcasing rapid stabilization and controlled
transient behavior. However, it does not explicitly account for delay effects,
making it potentially less robust to delay variations.

« Lyapunov-Krasovskii Functional Method: This approach provides a delay-
dependent stability guarantee by explicitly considering delay terms in a
Lyapunov functional. The results highlight its robustness against delay-
induced instability, with conditions derived in terms of linear matrix
inequalities (LMISs) ensuring stability.

« Combination of Pole-Placement and LKF: By merging the strengths of both
methods, the combination ensures robust stability under delays while also
enabling precise control over system dynamics. This approach achieves a
balance between delay robustness and desirable transient response, as seen in
the simulation results.

The comparative results are visualized through state trajectories, where the

stabilized system dynamics are plotted against the initial unstable behavior.

Additionally, control inputs are analyzed to highlight differences in control effort

across methods. These results underscore the complementary strengths of the

combined approach, providing a practical and effective solution for stabilizing
discrete delay systems.

Task (1): Simulation using the pole-placement method. The simulation results
obtained for the problem described in example 1 are shown in Figure 1.
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System Response with Pole-Placement Control
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Figure (1) System Response with Pole-Placement Control
As expected from the results obtained for example (1), the plot will show that the
states converge to zero over time, confirming the system's stability with the
designed pole-placement control. The oscillations introduced by the delay will

also be damped out.
Task (2): Simulation using the Lyapunov-Krasovskii functional (LKF) method.

The simulation results obtained for the problem described in example 2 are shown
in Figure 2.

Stabilized States Using LKF Control

State Values

-0.2
0.4 i i \ | |
(0] 5 10 15 20 25 30
Time Step (n)
Figure (2)
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As seen in figure (2), The state x(n) and the delayed state x(n — 1) should
converge to zero as K increases, demonstrating successful stabilization.

Task (3): Simulation using a Combination of Pole-Placement and LKF. The
simulation results obtained for the problem described in example 3 are shown in

Figures 3 and 4.

T T

10 & 1010 Unstable States (Without Control)

State Values

0 5 10 15 2 25 30 35 40 45 50
Time Step (n)
Stabilized States (With Control)

State Values

1 1 1 1

_1 O 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time Step (n)
Figure (3) stable and unstable states using a combined method

As shown in this figure, the combined technique stabilized the system, and both
the state and the delay state converged to zero smoothly.

Control Input Over Time

Control Input u(n)

L L L L L L L
15 20 25 30 35 40 45 50
Time Step (n)

Figure (4) The control u(n)

Azzaytuna University Journal (52) Dce. 2024



Stabilization and control of unstable discrete linear delay systems using..(417 -431)

Observed Results:
1: The plots of state trajectories confirm that the states, x;(n) and x,(n),
converge to the stability region (e.g., the equilibrium point at the origin).
2: The control u(n) adapts to both the system's instantaneous state and its delayed
state, showcasing its effectiveness in managing delay-induced challenges.
3: The magnitude and variations in u(n) remain bounded, indicating efficient
control effort without introducing excessive actuation.
This success underscores the importance of a well-designed u(n) in stabilizing
discrete linear delay systems, demonstrating its ability to guide the system to a
stable operating condition while addressing both transient dynamics and
robustness to delays.

IV. CONCLUSIONS
The stabilization and control of discrete linear delay systems present unique
challenges due to the combined effects of system delays and inherent instability.
This work explored three stabilization techniques—pole-placement, Lyapunov-
Krasovskii functional (LKF) method, and a combined approach. The findings
demonstrate:

1. Pole-Placement Method: This approach successfully stabilizes the system by
placing the closed-loop poles within the unit circle. It achieves desirable
transient behavior and rapid stabilization; however, its delay-independent
nature may limit robustness against significant or variable delays.

2. Lyapunov-Krasovskii Functional Method: The LKF method excels in
providing delay-dependent stability guarantees by explicitly incorporating
delay terms into the stability analysis. This ensures robustness and mitigates
delay-induced instability, though it may lack the precise dynamic shaping of
pole placement.

3. Combined Approach: The integration of pole placement with the LKF
method leverages the strengths of both techniques. The combined approach
offers robust stability under delays while achieving controlled transient
dynamics, providing a comprehensive solution for stabilizing discrete linear
delay systems.
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The control input u(n), derived from these methods, effectively forces the states
of the system into the stability region. Simulation results validate the efficacy of
the control strategies, highlighting the complementary benefits of combining the
two methods.

V. FUTURE WORK
While this study demonstrates the effectiveness of pole-placement, LKF, and their
combination, several areas merit further exploration to enhance the control and
stabilization of discrete linear delay systems:

1. Adaptive Control Strategies: Investigate adaptive control techniques that
dynamically adjust feedback gains in response to variations in delays or
system parameters.

2. Optimization of Control Effort: Explore optimization algorithms to
minimize the control input u(n) while maintaining stability and achieving
desired performance.

3. Nonlinear Delay Systems: Extend the combined approach to handle
nonlinear discrete delay systems, addressing additional complexities such as
time-varying delays or nonlinearity-induced instability.

4. Distributed Control for Networked Systems: Apply the methods to
distributed systems with network-induced delays, ensuring scalability and
robustness in multi-agent or interconnected systems.

This work lays the foundation for robust and efficient control of delay systems,
with future research aiming to refine and generalize these approaches for broader
applications.
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