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 الملخص:

تحقيق الاستقرار والتحكم في الأنظمة الخطية المتقطعة غير المستقرة ذات التأخير الزمني يشكل  

كبيرة، نظرًا للتأثيرات المزعزعة للاستقرار الناتجة عن هذه التأخيرات. تستعرض هذه الورقة تحديات 

، كراسوفسكي-طريقة دالة ليابونوفو طريقة توزيع الأقطاب :البحثية تطبيق تقنيتين متقدمتين للتحكم

بهدف تحقيق الاستقرار في هذه الأنظمة. تُستخدم طريقة توزيع الأقطاب لضبط ديناميكيات النظام المغلق 

عن طريق وضع الأقطاب في مواقع محددة بدقة، مما يضمن استقرار النظام ويلبي متطلبات الأداء 

ا لتحليل الاستقرار المعتمد كراسوفسكي إطارًا قويً-الديناميكي. في الوقت نفسه، توفر طريقة دالة ليابونوف

 .لى طول مسارات النظامعلى التأخير الزمني، من خلال بناء دالة تقل بشكل مستمر ع

هذا النهج المزدوج يجمع بين دقة ضبط الأقطاب وفعالية تحليل التأخيرات الزمانية باستخدام ليابونوف، 

مما يسمح بمعالجة شاملة لمشكلات الاستقرار والتحكم في الأنظمة الزمنية المتقطعة ذات التأخير. أظهرت 

ار وزيادة القدرة على مقاومة المحاكاة العددية فعالية هذه التقنيات، حيث برهنت على تحسين الاستقر

التذبذبات وعدم الاستقرار الناتج عن التأخير الزمني. تؤكد النتائج أن دمج طريقة توزيع الأقطاب مع دالة 

 .كراسوفسكي يوفر حلاً متكاملاً وفعّالًا للتحكم في الأنظمة الخطية المتقطعة ذات التأخير الزمني-ليابونوف

ABSTRACT: 

       Stabilizing and controlling unstable discrete linear delay systems present 

significant challenges, primarily due to the destabilizing effects of time delays. 

This paper explores the application of two advanced control techniques which are 

pole placement and the Lyapunov-Krasovskii functional method, to achieve 
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stability in such systems. The pole-placement method is used to adjust the 

system’s closed-loop dynamics by placing poles within desired locations, ensuring 

stability and meeting performance specifications. In parallel, the Lyapunov-

Krasovskii functional method offers a robust framework for delay-dependent 

stability analysis by constructing a functional that decreases along system 

trajectories. This dual approach leverages the strengths of both precise pole 

configuration and delay-aware Lyapunov methods, addressing both stability and 

control in discrete-time delay systems. Numerical simulations demonstrate the 

effectiveness of these techniques, showing improved stability and resilience 

against delay-induced oscillations and instability. The results confirm that 

combining pole-placement with Lyapunov-Krasovskii functionals provides a 

comprehensive solution for controlling discrete linear delay systems. 

Keywords: Discrete Linear Delay Systems, Time Delays, Stabilization, Control 

Theory, Pole Placement, Lyapunov-Krasovskii Functionals, State Feedback 

Control. 

I. INTRODUCTION 

Combining the pole-placement method with the Lyapunov-Krasovskii functional 

(LKF) method can provide a comprehensive and robust solution for controlling 

discrete linear delay systems. Discrete linear delay systems are a type of dynamic 

system in which time delays in feedback or state information can lead to instability 

or reduced performance, especially in systems that are already unstable. These 

systems are commonly found in various fields, including networked control 

systems, economic models, and processes with feedback delays. Time delays add 

complexity to both stability analysis and control design, as they can move system 

poles or eigenvalues into regions that cause oscillations or uncontrolled growth in 

system behavior [1], [2] and [3]. Thus, effective stabilization and control methods 

are critical for maintaining stability and achieving desired performance in these 

systems. 

Traditional stabilization methods for delay systems often involve state feedback 

or proportional-derivative (PD) controllers. However, these approaches may not 

fully address the specific challenges that delays introduce, particularly in discrete-

time systems, where delays can worsen instability [4]. To overcome these issues, 
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advanced techniques like the pole-placement method and the Lyapunov-

Krasovskii functional (LKF) method have shown effectiveness. 

The pole-placement method provides a direct way to influence system dynamics 

by placing the closed-loop poles in targeted locations, typically within the unit 

circle in discrete systems to ensure stability. By choosing appropriate feedback 

gains, this method allows for control over the transient response, such as setting 

the speed of convergence and damping [5]. However, pole placement alone may 

not ensure stability in systems with large or variable delays, as it lacks delay-

specific considerations. Meanwhile, the Lyapunov-Krasovskii functional method 

offers a robust framework for stability analysis that accounts for delays. By 

creating a Lyapunov functional that includes delay terms, the LKF method allows 

for stability conditions that directly consider the effect of delays. This approach 

ensures robustness to delay and provides a systematic method to confirm stability 

in systems with complex delay dynamics. 

According to [1], [9], [10] and [11], combining the pole-placement method with 

the Lyapunov-Krasovskii functional method offers a thorough solution for 

controlling discrete linear delay systems. This combined approach allows precise 

control over system dynamics and delivers robust stability assurances despite 

delays. In this framework, pole placement is used to establish desired dynamic 

characteristics, while the LKF method is applied to verify and improve stability 

relative to delay effects. This methodology takes advantage of both techniques, 

creating a practical and effective solution for stabilizing and controlling unstable 

discrete linear delay systems. In this paper, we explore the integration of pole-

placement and Lyapunov-Krasovskii functional methods, presenting a systematic 

approach to stabilizing and controlling discrete linear delay systems. Numerical 

simulations are conducted to validate the proposed approach, demonstrating its 

effectiveness in achieving stability and robustness in systems impacted by time 

delays. Many researchers have focused on this area, producing valuable and 

actionable results. In [6], In international Journal of Robust and Nonlinear Control, 

in 2014, Zhang, L., & Liu, X. present "Pole placement control for discrete-time 

delay systems with uncertain delays." In [7], Liu, Q., & Zhang, W. Introduce 

"Stability analysis and stabilization of time-delay systems with a Lyapunov-
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Krasovskii functional approach." [8] in 2016, Fridman, E., & Shaked, U. Present 

"Robust pole-placement controller design for systems with delays." The rest of the 

paper is structured as follows: Section II provides the principle of stability in 

discrete linear systems. This section provides an in-depth explanation of the 

principles underlying the pole-placement method combined with the Lyapunov-

Krasovskii functional (LKF) approach. Section III provides a comprehensive 

analysis and discussion of the outcomes derived from this study, as showcased in 

the simulation and results section. Section IV summarizes the conclusions, while 

Section V outlines potential directions for future work. Finally, Section VI lists the 

references. 

II. THE PRINCIPLE OF STABILITY IN DISCRETE LINEAR SYSTEMS  

The stability of discrete linear delay systems pertains to how the system behaves 

over time, especially how its state changes in response to initial conditions or 

external inputs. A system is considered stable if its state stays within bounds, and 

in the case of asymptotic stability, it should eventually converge to an equilibrium 

point (usually the origin) as time progresses. In systems with time delays, stability 

becomes more intricate because delays introduce an extra dynamic that can affect 

the system's evolution, potentially leading to instability, oscillations, or 

divergence if not carefully managed. For discrete-time delay systems, stability is 

typically assessed by examining the positions of the system’s poles (or 

eigenvalues) and how delays impact the system's behavior. Delays in feedback or 

state measurements can displace the system's poles into unstable regions, causing 

undesirable outcomes like oscillations, divergence, or erratic behavior. In general, 

the concept of stability of discreate linear systems can be expressed in the 

following:  

1.Delay-Dependent Stability: 

The stability of a delay system often depends on the magnitude of the delay. A 

small delay might not significantly affect stability, while a large delay could 

destabilize the system. Stability conditions that depend on the size of the delay are 

called delay-dependent stability criteria. These criteria can help determine the 

maximum allowable delay before the system becomes unstable. 

2.AsymptoticgStability: 

A system is asymptotically stable if, for any initial condition, the state of the 
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system will eventually approach zero as time progresses. For discrete-time 

systems with delays, asymptotic stability is often determined by analyzing the 

system’s eigenvalues. If the poles of the system’s closed-loop transfer function lie 

strictly inside the unit circle in the complex plane, the system is stable. 

3.Lyapunov Stability: 

This refers to a system where small disturbances in the state do not lead to 

unbounded growth. In delay systems, a Lyapunov-Krasovskii functional is often 

used to analyze stability by constructing a function that decreases over time, 

thereby proving that the system's state will not diverge. 

4.Instability andhOscillations: 

Time delays in a system can lead to instability, where the system's state grows 

without bound over time. This can occur if the system poles are outside the unit 

circle, or the delay causes the poles to move into regions that lead to oscillatory or 

divergent behavior. 

The mathematical form of discrete system can be written as:  

𝑥(𝑛 + 1) = 𝐴𝑥(𝑛) + 𝐵𝑥(𝑛 − 𝜏)                                                                        (1) 

where: 

• 𝑥(𝑛) is the state of the system at time step n, 

• A and B are system matrices, 

• τ is the delay term, 

• 𝑥(𝑛 − 𝜏) represents the state at a delayed time step 𝑛 − 𝜏. 

In the reminder of this section, we present in detail two methods that can work in 

this area which are the pole-placement method and the Lyapunov-Krasovskii 

method, and how can combining them to produce robust solution for controlling 

discrete linear delay systems. 

A. Pole-Placement Method 

The pole-placement method is an effective control technique for stabilizing and 

managing linear systems by setting the closed-loop poles at specific desired 

positions. In discrete-time systems, stability is ensured when the system's poles 

are located within the unit circle in the complex plane. However, when time delays 

are present, the control design becomes more challenging, as delays can push poles 

outside the unit circle, leading to instability. While the pole-placement method can 
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be adapted for systems with delays, it requires careful consideration of how these 

delays affect the pole locations. 

The main idea of the pole-placement method is to create a feedback control law 

that positions the closed-loop poles at specific locations, allowing for control over 

the system's dynamics, including its stability and transient response. For discrete 

delay systems, this involves: 

1. Selecting desired pole locations: These are chosen to ensure that all poles lie 

within the unit circle (ensuring stability) and to achieve specific dynamic 

characteristics, such as target damping and response speed. 

2. Designing the feedback control gain: By applying state feedback, the 

control law is constructed to shift the closed-loop system poles to the desired 

locations. The control law generally takes the form: 

𝑢(𝑛) = −𝐾𝑥(𝑛) − 𝐾𝑑 𝑥(𝑛 − 𝜏),                                                             (2) 

where 𝐾 and 𝐾𝑑 are feedback gain matrices designed to shift the poles to desired 

locations, and τ is the time delay. 

3. Considering the effect of delay on poles: In delay-affected systems, delays 

can add new poles or alter existing ones, requiring careful adjustments in the 

feedback design. To ensure robust stability under these conditions, delay-

dependent methods, like Lyapunov-Krasovskii functionals, are often 

integrated with pole placement, more details van be found in [12], [13].  

 

Example (1) 

Consider a simple discrete-time system with a single delay in state feedback, 

represented by: 

𝑥(𝑛 + 1) = 0.5 𝑥(𝑛) + 0.2𝑥(𝑛 − 1) + 𝑢(𝑛)                                          (3) 

Based on the numerical values of Equation (3), the eigenvalues of the system may 

fall outside the unit circle, indicating instability. To address this issue, the 

following steps should be taken: 

1. Determine the desired pole locations: Ensure the system's poles are 

positioned within the unit circle. For this example, setting the poles at 

0.30.30.3 can achieve asymptotic stability. 

2. Calculate the feedback gains 𝑲 𝒂𝒏𝒅  𝑲𝒅: Design these gains using the 

feedback control law. 
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Recall the feedback control law in Equation (2) to implement the designed 

feedback gains effectively. 

𝑢(𝑛) = −𝐾𝑥(𝑛) − 𝐾𝑑 𝑥(𝑛 − 1),                                                                    (4) 

the values of both 𝐾 and 𝐾𝑑  should be chosen to ensure that the closed-loop pole 

is within the desired location, which is 0.3 in our case. So, Equation (3), can be 

written as 

𝑥(𝑛 + 1) = (0.5 − 0.2 𝐾) 𝑥(𝑛) + (0.2 − 0.2 𝐾𝑑) 𝑥(𝑛 − 1)                         (5) 

Solving Equation (5) for 𝐾 𝑎𝑛𝑑  𝐾𝑑 that make the system pole at 0.3, we get the 

values of 𝐾 𝑎𝑛𝑑  𝐾𝑑 are 0.4 and 0.1 respectively. 

3. Verification of Stability and System Dynamics: After updating the system 

variables with the newly calculated values, it is essential to confirm that the 

system remains stable. These adjustments should ensure that any oscillations 

caused by the delay are progressively damped over time, leading to a stable 

response. 

B. Lyapunov-Krasovskii method 

The Lyapunov-Krasovskii functional (LKF) method is a robust mathematical 

approach designed to analyze and guarantee the stability of systems affected by 

time delays. Unlike conventional Lyapunov functions, which focus solely on the 

system's current state, the LKF method incorporates the state’s history into its 

formulation, accounting for the impact of delays. 

This technique is especially effective for systems where time delays significantly 

influence the dynamics, potentially leading to instability. By providing delay-

dependent stability criteria, the LKF method ensures robustness and reliable 

performance in the presence of delays. 

Steps of the Lyapunov-Krasovskii Method 

1. System Representation: Reconsider a discrete linear delay system 

represented in Equation (1). 

2. Constructing the Lyapunov-Krasovskii Functional: Define a functional 

𝑉(𝑛) that depends on both the current state 𝑥(𝑛) and its delayed state  𝑥(𝑛 −

𝜏): 

𝑉(𝑛) = 𝑥(𝑛)𝑇𝑃𝑥(𝑛) + ∑ 𝑥(𝑗)𝑇𝑄 𝑥(𝑗),𝑛
𝑗=𝑛−𝜏                                                       (6) 

Equation (6) should verify the following two assumptions. 
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Assumption (1): Matrices 𝑃 and 𝑄 are positive semi-definite i.e 𝑃 > 0 and 𝑄 ≥

0 . 

Assumption (2): The summation term captures the influence of the delay. 

3. Stability Condition: The system is stable if the functional 𝑉(𝑛) decreases 

over time:  

Δ𝑉(𝑛) = 𝑉(𝑛 + 1) − 𝑉(𝑛) < 0,                                                                        (7) 

then by substituting the system dynamics into 𝑉(𝑛 + 1), stability conditions are 

formulated in terms of the system matrices 𝐴 and 𝐵, as well as the delay τ. These 

conditions are typically represented as Linear Matrix Inequalities (LMIs), which 

can be efficiently solved using numerical methods. 

4. Control Law Design: To stabilize the system, a state-feedback control law 

𝑢(𝑛) = −𝐾 𝑥(𝑛) or a delay-dependent control law can be introduced. The 

control gains 𝐾 are designed to ensure that the Lyapunov-Krasovskii 

functional satisfies the stability condition. More explanation can be found in 

[13], [14] and [15].  

Example (2) 

Consider the system described in Equation (8), where the goal is to design a 

stabilizing control law using the Lyapunov-Krasovskii functional (LKF) method. 

 

𝑥(𝑛 + 1) = [
. 1 . 02
. 1 −.15

]  𝑥(𝑛) + [
. 1 . 01
. 2 . 2

] 𝑥(𝑛 − 1) + [
0
1

] 𝑢(𝑛)                     (8) 

Solution 

1. The 1st step is to define the LKF, using the function 𝑉(𝑛) in Equation (6). 

2. Compute ∆𝑉(𝑛): 

Δ𝑉(𝑛) = 𝑉(𝑛 + 1) − 𝑉(𝑛)                                                                                 (9) 

3. Calculate the matrices 𝑃 and 𝑄 as following: 

[
𝑃 − 𝐴𝑇𝑃𝐴 − 𝑄 −𝐴𝑇𝑃𝐵

−𝐵𝑇𝑃𝐴 −𝐵𝑇𝑃𝐵 + 𝑄
] > 0                                                                (10) 

The resulted obtained for this example are: 

𝑃 = [
6.057 −0.0159

−0.159 4.886
]            and                 𝑄 = [

−0.6775 −1.4993
−1.4993 −0.9287

] 

4. Design a control law using 𝑢(𝑛) = −𝐾 𝑥(𝑛). 

Finally, the feedback gain K is: 

   𝐾 = [−0.0005 −0.2046] 
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5. Verification of stability and system dynamics. After calculating the gain 𝐾 

and adjusting the system variables using the control law, the system becomes 

stable. Then, the state trajectories are simulated for N steps, including the 

delayed effect, to observe the system's behavior under the designed control 

law. 

6. The last step is to plot 𝑥(𝑛)  and 𝑥(𝑛 − 1) as seen in figure (2). 

 

C. Combining the pole-placement method with the Lyapunov-Krasovskii 

Functional (LKF) method to stabilize an unstable discrete linear delay 

system. 

In this section, we work with a combined method consisting of pole-placement 

and LKF. The process involves designing a stabilizing feedback control law to 

ensure the system's poles lie within the unit circle while verifying stability using 

the LKF approach.  

Example (3) 

Consider the following unstable system, 

 

𝑥(𝑛 + 1) = [
1.2 0.4
. 1 0.9

]  𝑥(𝑛) + [
0.5 0.1
0.2 0.3

] 𝑥(𝑛 − 1) + [
0
1

] 𝑢(𝑛)                   (11) 

The system in Equation (11) is unstable because some eigenvalues of the matrix 

𝐴 are outside the unit circle. We stabilize the system using a combined Pole 

Placement and Lyapunov-Krasovskii Functional approach. 

Approach: 

1. Design feedback control using pole - placement: 

Using a control law 𝑢(𝑛) = −𝐾𝑥(𝑛) such that the closed-loop poles are moved 

to desired stable locations within the unit circle. 

2. Verify stability using LKF: 

Construct a Lyapunov-Krasovskii functional to ensure delay-dependent stability 

of the controlled system. 

3. Plot State Trajectories: 

Compare the system's unstable states (without control) and stable states (with 

control). The results obtained for this system are presented in the next section 

simulation results. 
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III. SIMULATION AND RESULTS 

The simulation investigates the stabilization of an unstable discrete linear delay 

system using three approaches: pole-placement, Lyapunov-Krasovskii 

functional (LKF) method, and their combination. Each method is applied to the 

same system to analyze and compare their performance in stabilizing the system 

and achieving desired dynamics. 

• Pole-Placement Method: This method directly manipulates the system's poles 

to ensure they lie within the unit circle. The feedback gains are calculated to 

achieve stability, with results showcasing rapid stabilization and controlled 

transient behavior. However, it does not explicitly account for delay effects, 

making it potentially less robust to delay variations. 

• Lyapunov-Krasovskii Functional Method: This approach provides a delay-

dependent stability guarantee by explicitly considering delay terms in a 

Lyapunov functional. The results highlight its robustness against delay-

induced instability, with conditions derived in terms of linear matrix 

inequalities (LMIs) ensuring stability. 

• Combination of Pole-Placement and LKF: By merging the strengths of both 

methods, the combination ensures robust stability under delays while also 

enabling precise control over system dynamics. This approach achieves a 

balance between delay robustness and desirable transient response, as seen in 

the simulation results. 

The comparative results are visualized through state trajectories, where the 

stabilized system dynamics are plotted against the initial unstable behavior. 

Additionally, control inputs are analyzed to highlight differences in control effort 

across methods. These results underscore the complementary strengths of the 

combined approach, providing a practical and effective solution for stabilizing 

discrete delay systems. 

Task (1): Simulation using the pole-placement method. The simulation results 

obtained for the problem described in example 1 are shown in Figure 1. 
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                      Figure (1) System Response with Pole-Placement Control 

As expected from the results obtained for example (1), the plot will show that the 

states converge to zero over time, confirming the system's stability with the 

designed pole-placement control. The oscillations introduced by the delay will 

also be damped out. 

Task (2): Simulation using the Lyapunov-Krasovskii functional (LKF) method. 

The simulation results obtained for the problem described in example 2 are shown 

in Figure 2. 

 
Figure (2) 
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As seen in figure (2), The state x(n) and the delayed state 𝑥(𝑛 − 1) should 

converge to zero as 𝐾 increases, demonstrating successful stabilization. 

Task (3): Simulation using a Combination of Pole-Placement and LKF. The 

simulation results obtained for the problem described in example 3 are shown in 

Figures 3 and 4. 

 
                 Figure (3) stable and unstable states using a combined method 

As shown in this figure, the combined technique stabilized the system, and both 

the state and the delay state converged to zero smoothly. 

 

                                            Figure (4) The control 𝑢(𝑛) 
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Observed Results: 

1: The plots of state trajectories confirm that the states, 𝑥1(𝑛) and 𝑥2(𝑛) , 

converge to the stability region (e.g., the equilibrium point at the origin). 

2: The control 𝑢(𝑛)  adapts to both the system's instantaneous state and its delayed 

state, showcasing its effectiveness in managing delay-induced challenges. 

3: The magnitude and variations in 𝑢(𝑛)  remain bounded, indicating efficient 

control effort without introducing excessive actuation. 

This success underscores the importance of a well-designed 𝑢(𝑛)   in stabilizing 

discrete linear delay systems, demonstrating its ability to guide the system to a 

stable operating condition while addressing both transient dynamics and 

robustness to delays. 

IV. CONCLUSIONS  

The stabilization and control of discrete linear delay systems present unique 

challenges due to the combined effects of system delays and inherent instability. 

This work explored three stabilization techniques—pole-placement, Lyapunov-

Krasovskii functional (LKF) method, and a combined approach. The findings 

demonstrate: 

1. Pole-Placement Method: This approach successfully stabilizes the system by 

placing the closed-loop poles within the unit circle. It achieves desirable 

transient behavior and rapid stabilization; however, its delay-independent 

nature may limit robustness against significant or variable delays. 

2. Lyapunov-Krasovskii Functional Method: The LKF method excels in 

providing delay-dependent stability guarantees by explicitly incorporating 

delay terms into the stability analysis. This ensures robustness and mitigates 

delay-induced instability, though it may lack the precise dynamic shaping of 

pole placement. 

3. Combined Approach: The integration of pole placement with the LKF 

method leverages the strengths of both techniques. The combined approach 

offers robust stability under delays while achieving controlled transient 

dynamics, providing a comprehensive solution for stabilizing discrete linear 

delay systems. 
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The control input 𝑢(𝑛), derived from these methods, effectively forces the states 

of the system into the stability region. Simulation results validate the efficacy of 

the control strategies, highlighting the complementary benefits of combining the 

two methods. 

V. FUTURE WORK 

While this study demonstrates the effectiveness of pole-placement, LKF, and their 

combination, several areas merit further exploration to enhance the control and 

stabilization of discrete linear delay systems: 

1. Adaptive Control Strategies: Investigate adaptive control techniques that 

dynamically adjust feedback gains in response to variations in delays or 

system parameters. 

2. Optimization of Control Effort: Explore optimization algorithms to 

minimize the control input 𝑢(𝑛) while maintaining stability and achieving 

desired performance. 

3. Nonlinear Delay Systems: Extend the combined approach to handle 

nonlinear discrete delay systems, addressing additional complexities such as 

time-varying delays or nonlinearity-induced instability. 

4. Distributed Control for Networked Systems: Apply the methods to 

distributed systems with network-induced delays, ensuring scalability and 

robustness in multi-agent or interconnected systems. 

This work lays the foundation for robust and efficient control of delay systems, 

with future research aiming to refine and generalize these approaches for broader 

applications. 
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