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Abstract
In this paper, we study a smoothing effect for a transport diffusion equation,
with a fractional dissipation, and in the Besov spaces B ; given in Definition
2.2.4. We use a new approach based on Lagrangian coordinates combined
with paradifferential calculus.
Keywords: Transport diffusion equation, Incompressible fluid flow,
smoothing effects.
1 Introduction

In this research, we are concerned with the initial value problem of the 2D

dissipative quasi-geostrophic model
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divv =0, (1.1)

{ate +v-70 +(ID|1*+ DO =f
0)t=0 = 6o,

where 6 is the scalar function represents the potential temperature and the
parameter a € [0,1]. The 2D velocity field v = v(x,t), x € R?, t € R,, is
determined by Riesz transform R;, Vi = 1,2 of 6, that is

9, 0
V= ——9,—0):= (—R,6, R,6).
< ID| "’ |D] 2rr

The differential operator v - V is defined respectively by

v.V= Zidzl Uiai.

1
The fractional differential operator |D| = (—A)z is defined by its Fourier

transform
F(Dlu) = |¢|F ),

and the operator div v is defined by

2
divv = z o',
i=1

The first equation of (1.1) serves as a 2D models arising in geophysical fluid
dynamic [11] and the second equation divv =0, describe the

incompressibity of the fluid.
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This equation has been intensively investigated and much attention is carried
to the problem of global well-posedness. For the sub-critical case (a > 1) the
theory seems to be in a satisfactory state. Indeed, global existence and
uniqueness for arbitrary initial data are established in various function spaces
(see for example [6]). However, the critical and super-critical cases,
corresponding respectively to @« = 1 and a < 1, are harder to deal with. In
the super-critical case @ < 1, we have until now only global results for small
initial data, see for instance [2] and [10]. For critical case @ = 1, Constantin,
C’ordoba and Wu showed in [5] the global existence in Sobolev space H?
under smallness assumption of L™ norm of 8, but the uniqueness is proved

for initial data in H?.

The main goal of this work is to establish a smoothing effect for a transport
diffusion model in the critical case, that is when the initial data belong to the

homogeneous critical Besov space.

The paper is organized as follows. In section 2, we give some definitions and
recall some functional spaces. Section 3 is devoted to recall some well-known
results, that will be need in the next section. In section 4, results and

discussion are shown, and some conclusions are drawn in section 5.

2 Technical Tools

In this section, we recall some notations and some functional spaces as a

Lebesgue space LP, and Besov space and some results used in the paper.
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2.1 Notation

e We denote by C any positive constant than will change from line to line
and C, a real positive constant depending on the size of the initial data.

e For any A and B, we say that A < B, if there exist a constant C > 0
such that A < CB.

e The space (g’ is the space of all continuous function.

2.2 Some functional spaces

This subsection is devoted to recall some functional spaces and some

important results. The following definition see [1].
Definition 2.2.1

A continuous map f: X — Y is homeomorphism, if it is bijective and its

inverse is continuous.
Definition 2.2.2 [1] and [3]

We define the flow associate to the velocity v by the following:

t

Y(t,x) =x+ f v(t, Y(r)dt

0

Definition 2.2.3 [3] and [7]

We define the usual Lebesgue space L? (R%), p € [1, + o], by the space of all

function f such that:
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..... 1

1l = f FeOlPdx | < oo,
R

and for p = oo, we say that f € L™, if

fl 0 == supy|f(x)] < oo.

We need the definition of Besov space. We define the dyadic decomposition
of the full space R? and recall the Littlewood-Paley operators, see for
example [1] and [3]. There exist two nonnegative radial functions y € D(R?)
and ¢ € D(R?/{0}) such that :

X +Xg200(27%) =1, VEER?

> 0(2799) = 1,v¢ € R/(0},

qEZ
Ip—ql = 2= supp p(27P.) N upp p(279.) = ¢,
qg=1=supp yn upp (279.) = ¢.

Leth = F~1p and h = F~ 'y, the frequency localization operators A, and

Sq are defined by :
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Aqf = @(279D)f, Sqf =x@7ID)f
A f =Sof,  Df=0 forq<-2.
The homogeneous operators are defined as follows
Vq€eZ A f =@27D)f.
We recall now the definition of Besov spaces, see [1] and [3].

Definition 2.2.4 (Besov space)

Let s € Rand 1 < p < c. The inhomogeneous Besov space B;,. defined
by:
Bsr = {f € SR?):IIf ll55, < oo},

where S is the Schwartz space and

Ifllsg, = (211811, ) -

The homogeneous norm :

Iflles, = (2201811,
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Definition 2.2.5 [3] and [7]
Let T > 0 and p > 1, we denote by L’;Bpﬁr the space of distribution f such
that

1,5, = ||(2q5||Aqf||Lp){;r o ST

Besides the usual mixed space L}.B; ., we also need Chemin-Lerner

space Z‘;Bglr which defined as the set of all distributions f satisfying

1 lgsg, = || 2201801,

Lemma 2.2.1 (Holder inequality) [1] and [3]

< +o00,
gT

If (f,g) belongsto LP x L4 for any (p,q,r) € [1,0]3, and such that

% = % + é,then fg belongs to L"and satisfies

Ifgllr < £ llellgllLa.

The following lemma is needed in the proof of our main result see [1] for a

proof.
Lemma 2.2.2 (Gronwall’s lemma)

Let f is a nonnegative continuous function on [0, t], a is a positive real

number and let A be a continuous function on [0, t]. Suppose also that:
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t

) <a+ f A F (D).

0
Then we have,

t

ft) <aexp jA(T)dT .

0
3 Some well-known results

In this section, we recall some well-known results, that will be need in the
next. Firstly, we give the Bernstein inequalities. This inequality proved in [3]

for any tempered distribution u, and the first author S. Sulaiman [13] and

[14], proved the same inequality but for the bloc dyadic S, and Aq.
Lemma 3.1 (Bernstein lemma)

There exists a constant € > 0 such that for all g € Z, k € N and for every

tempered distribution u we have,
supja=r|[0Squ| , < Ckz"("+2(§‘%))||5qu||m, b=a=1 (2.1)
C_kzqk”Aqu”La = sup|a|=k||6“Aqu||La = Ckzqk”Aqu”La (2.2)

The following lemma is useful to our result, see [9], for a proof.
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Lemma 3.2
Let f be any function in Schwartz class and 1 a diffeomorphism preserving
Lebesgue measure, then for all p € [1,+], and for all j,q € Z, we have
14;Aqfop]l,, < C2Ual|[vypeU | L[Aqf] .
with
a(j,q) = sign(j — q).

The following result is proved in [3] and [9].
Lemma 3.3
Let u any smooth function in the Besov space B, and v be a divergence
free vector field of R%. Then we have

Z”[Aq,v.V]u”Lz < 119wl llullgg -

q€L
The proof of the following result can be found in [9].
Proposition 3.1
If f € BY, such that « € [0,1[, and let 1 be a Lipschitz measure-preserving
homeomorphism on R%. Then there exists a positive constant C,, depend
only on «a, and such that

IIDI* (fo ) — (DI*£) 0 Yll;z < Ce" OV (E)2%%|f 2,
with
V() = IVl 100
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The following result describes the action of the semi group operator
e~tIP1°on distribution, whose Fourier transform is supported in a ring, see
[1], [8] and [9].

Proposition 3.2

Letp € [1,+],and t,a € R,. Then there exists a positive constant ¢ such
that forany q € N,

le=1Pagv]| , < e |[aqv]]

Y
where the constants ¢ and C, depend only on the dimension d.

The following can be found in [4] and [7].

Proposition 3.3

Let v be a smooth divergence free vector field. Let also f be a smooth
function and 6 is a smooth solution of (1.1). Then for every p € [1, o] we

have

16Ol < 6ol + f 1f (@)l etz
0

4 Results and discussion

In this section, we prove the main result of the paper.
Theorem 4.1

Let f € L},.(R,, BY,) and v be a smooth divergence free vector field of R?

such that v € L1 . (R, Lip(R?). We consider also a smooth solution 8 of the
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transport-diffusion equation (1.1), with a = % Letalso 6, € B . Then there

exists a positive constant c, and such that
1017050, < ce® (6ol + If 250, ),
where,
t
V@ = [ 1@ lmd
0

For the proof, we use a new approach based on Lagrangian coordinates
combined with paradifferential calculus. The idea of the proof will be done
in the spirit of [7] and [12]. First, we prove the smoothing effects for a small

interval of time depending of vector v, but it depends not on the initial data.

In the second step, we proceed to division in time thereby extending the

estimate at any time arbitrary chosen positive.
4.1 Local estimates

We localize in frequency the evolution equation, and rewriting the equation

in Lagrangian coordinates.

Let g € N, then the Fourier localized function A, 6 satisfies

1
84(2:0) + 8q(v.V0) + &, (IDIZ +1) 6 = A, f

Using the notation [ A, ,v.V |6 = A,(v.V8) — v.VA,6, We get
A(.V0) =[A,,v.V |0 +v.V A0
This gives that
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0:8,0 + v.VAH +[8,,v.7]0+ (DI +1) 4,0 = 4, f.

Therefore
0:0,0 + v. VA0 + (|D|%+1) DO =40, f— [0, v.V]0:=F,
From Proposition 3.3, we have
t

18,6@Il + 12,81,z < [14460]l 2 + f 1F, @l 2 dr.

Since we have
t
18,6@Ilz < 18,8@I|, + 12,01,z < [1Ag60]l . + f 17, @l - dr.
Therefore
t
l8,601,. = 1860l + | 171, dr

Summing over q, yields

This gives that,

t
”9”831 < ”90”331 + ”f”L%Bgl + Cf Z ”[Aq V. V]B(T)”Lz dt
’ ’ ' 0 q

Therefore, by using Lemma 3.3, we get

t
161759 < 186ll50, + l1f 150, + C f 170 @)l 1611z o d.

Using Lemma 2.2.2, to obtain

®
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t
10lzz08g, < C (I60llag, + I1f 359, ) e« @Nuro,

Let us now introduce the flow v, of the regularized velocity v,

t

Yo (t,x) = x + f v (r, Y, (x, x)) dr.

0
We set

Ba(t, ) = AO(t Y (X)) and  Fy(t,x) = E, (£, (t,x)).

Then we have,

_ 1 _ _ 1
0.0, + (IDIz +1)8, = Fy + (DI +1) (8,6 0 )

—((|D|§+1) Aq0> o, = Fl (4.1)
Since the flow preserves Lebesgue measure, then we obtain
IFll,> < llagfll . + ll[agv.v]ell ,  (42)
Using now Proposition 3.1, we find that for g € Z

|10 Fow) = (1) 09|, < ce"Ov@2iifle, vo:

”VU”L%Loo.

This gives that,

H(IDI% + 1) (8,0 0,) — <(|D|% + 1) Aq9> 0,

LZ
< CeOV(©)22]|8,0]| ,  (4:3)

Combining (4.2) and (4.3), we obtain
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_ 4
1F7 1z < 18l 2 + ll[aq v V16|, + Ce@v©r22]ja00] .

q
< [[8gfll 2 + [l[ag.v.V]o| , + Ce©2z2|a,0]| ,
Now, we will again localize in frequency the equation (4.1) through the
operator A; , j € Z
0.0; 0, + (lDl% + 1) A; 6, = AFY,

where

Using Duhamel formula,

— —t(IDI%H) g —(t—r)<|D|%+I) _
A 6,(tx) =e A; 69 + f e AiF,(T)dt

0
t

N f e—(t—r)(lm%H)A]_ <(|DI% + 1) (046 0,)
- <(|D|% +1) Aq0> 0 ¢q> dr

Taking the L? norm, of the above equality, we get

1
—t(IDIZ
e
0

—(t T) |D|2+1)
dt

LZ

AjFy (1)

18,6, <

12
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t

|

0

—(t—1)<|D|%+1
e

>A,- ((IDI% + 1) (A6 0 ,)
dr.

- <(|D|%+1) Aq9> o¢q> )

Using Holder inequality 2.2.1 and Proposition 3.2, we find

i t I
8,8, 5 = e |aogll,. + € [ e |laf @] wae
0

12—

t .
rc f e~ [a,,v. 7|0 ()] d7
0

+C eCV(t)Z%f e‘c(t_f)2%||Aq9(T)||L2dT
0
Therefore,
188l < € (86811, + IIAquIL%L2)+ [ag v-7]6]l 2
J
+ Ce®V 22 ||Aq9||L?,L2 (4.4)

Let N € N be a fixed number that will be chosen later, and since the flow
preserves Lebesgue measure then we write
1246

= [l
LPL? ” allper?

<), I8l

+Z A:O, | o
PN A

=1+ 1l

®
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If j — q = N, it follows from (4.4) and by using Proposition 3.2 that,

8,00 5,2 = € 27ROl
t

052
LPL

< c27-le"® a0

LPL?
Therefore, we get

1<C27Ve®| a0 (4.5)

052
LPL

For the terme 11,

11=z AT |
B L1

we use (4.4), to get
1< Cllagboll 2 + laafllpe + ag.v- v 6]l 5 . +
CetV®25 1446]] o, (4:6)
t

This gives in view of (4.5) and (4.6), that
||Aq9||L%OL2 <I+1I

Thus
180811,z = 27,8l + 1860l
#1800 + 1[8g,v- 716, + e ©22],0]
Therefore,
180812 = 18601l + [27 + 28] 7 a6 ..

+ ||Aqf||L%L2 + [ |[ag.v. vlo@| ,dr.

®
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Now, we claim that there exist two constants N € N and C; such that if
V(t) < Cq,then
J 1
27N 422 < —,
2C
To show this, we take first ¢ such that VV(t) < 1, which is possible since
j

tlirg1+ V(t) = 0. Second, we choose N in order to get 27V + 22 < % By

taking again V (t) sufficiently small, then under this assumption V(t) < C;,

we obtain for g > —1,

t
1860l5,2 = Nl + 180flL:+ [ a0 710 (47

summing over g, and using Lemma 3.3 and for V(t) < C;, we find

t
101|050 < CllBollgo. + ClIfll1go. +C | IVU(@)le0]|Olze0 g0 dT.
t P2,1 2,1 tP2,1 t P21
0
Using Lemma 2.2.2, yields
t
18117050, < C (160llag, + If 350, ) e IT*@liod  (4.8)
Therefore, the result is proved for small time.
4.1.2 Globalization

Let us now see how to extend this for an arbitrary positive time T. We take a

partition ( T;)_, of the interval, [0, T] such that
[T Vo (e) e dT ~ Co, Vi € [0,N]. .

Reproducing the same argument of (4.8), we obtain

Tiy1
o9, < CIOTDlag, + [ IF@llag, dr

i

el
16l .
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Summing these estimates on i = 1,to i = N, and using triangle inequality,

gives

N-1
T
1615509, < € Y 10CTlgg, +C [ 1/ (Dllgg, aT.
=0

Thus
10112050, < CN (I160ll5g, + Ifll 358, ) €.

It suffices to choose N such that CN =~ V(t), then

161155259, < V() (601159, + Ifll,3 50, ) .

Therefore, we get

18115050, < Ce& ™ (180159, + Ifll 55, ).

This is the desired result, and the proof of the theorem is now complete.

5 Conclusion

We have proved a smoothing effect for a transport diffusion equation in space
dimension two. For this, we used the concept of the flow associated to the
velocity and a new approach based on Lagrangian coordinates combined with
paradifferential calculus.
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