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 الملخص

  Cellular flow shop تتناول هذه الورقة حل مسألة جدولة العمليات الإنتاجية في نظام الخلايا الصناعية

وأقصى وقت  Total Flow time (TFT)بهدف التعظيم الثنائي لتقليل معايير وقت التدفق الإجمالي

في وقت واحد ، أي ان عملية التعظيم تتم في آن واحد  ويرمز لهذه  Makespan  لإستكمال العمليات الإنتاجية

 وقد تم تصميم خوارزمية  سرب الجسيمات متعدد الأهداف  .(SDSTs) مع (FMCSP) المسألة بالرمز

multi-objective Particle Swarm Optimization  (MPSO) وخوارزمية المحاكاة المتعددة 

(MOSA) تسمى  جودة الحلوللحل المشكلة المقترحة. كما تم برمجة خوارزمية تهدف الى تحسين( 

IMPSO-TA) حيث يتم دمج ، MPSO مع خوارزمية قبول العتبة (TA)  لتحسين تقارب الحلول والحصول

على أفضل الحلول التي تم التوصل إليها باستخدام النماذج المقترحة. كما تم تقييم الخوارزميات المقترحة 

لمشاكل التحسين متعددة الأهداف. أظهرت النتائج أن  (QI) باستخدام عدة مقاييس لمؤشرات الجودة

تقريبية في وقت قياسي.  "  Pareto Front الخوارزميات المقترحة يمكن أن الحصول على حلول ثنائية "باريتو

أفضل من  IMPSO-TA  التي تم إنشاؤها بواسطة الخوارزمية Pareto  علاوة على ذلك ، فإن جودة حلول

بناءً على الاختبارات المستخدمة في  MOSA و MPSO  خدام الخوارزميةالتي تم التوصل إليها باست الحلول

-IMPSO  هذه الورقة . كما أثبتت الدراسة أن جودة الحلول التي تم الحصول عليها باستخدام خوارزمية

TA المقترحة أفضل الخوارزميات المتاحة في مسائل جدولة العمليات الإنتاجية في نظام الخلايا الإنتاجية 
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Abstract 

This paper addresses a bi-criteria optimization problem to minimize total 

flow time and makespan simultaneously for a cellular flowshop with 

Sequence Dependent Setup Times (FMCSP with SDSTs); A multi-objective 

Particle Swarm Optimization (MPSO) and a Multi-objective Simulated 

Annealing (MOSA) Algorithm are proposed to solve the proposed problem. 

furthermore, an improved algorithm (named as IMPSO-TA), where MPSO is 

combined with Threshold Acceptance (TA) algorithm to improve the 

convergence of the obtained Pareto Fronts. The proposed algorithms are 

evaluated using several Quality Indicators (QI) measures for multi-objective 

optimization problems. Results showed that proposed algorithms can 

generate approximated Pareto Fronts in a reasonable CPU time. Furthermore, 

quality of Pareto fronts generated by IMPSO-TA is better than Pareto fronts 

found by MPSO and MOSA based on the test problems that are used in this 

research at the cost of CPU time. Further, the proposed IMPSO-TA performs 

as best available algorithms in the literature for small and medium test 

problems with a very minor deviation for best results for large test problems. 

Keywords: Multi-objective optimization, Multi-objective Particle Swarm 

Optimization, Multi-objective Simulated Annealing, Pareto fronts, Cellular 

flowshop, Sequence dependent setup times 
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I. INTRODUCTION 

In a cellular manufacturing environment, machines are grouped into cells. 

Each cell is dedicated to the production of a specific part family. A cell 

consists of machines or workstations, arranged in a processing sequence. The 

wide application of the Cellular Manufacturing Systems (CMS), the high 

level of competitiveness in the current market has forced manufacturers to 

improve the productivity and use small-lot size production systems 

(Bevilacqua et al., 2015). Further, the intense competition has forced 

manufacturing organizations to find methods to reduce cost and to deliver 

product on time with high customer satisfaction (Panwar et al., 2015). 

Cellular manufacturing helps to highlight the economic advantage of batch 

manufacturing. 

Most of the currently available algorithms only deal with the optimization of 

a single criterion measure (S. W. Lin & Ying, 2012). However, considering 

more than a single objective compromises the advantages of the studied 

objectives. For instance, minimization of the makespan improves production 

efficiency, while minimization of the total flow time reduces the work-in-

process inventory. Therefore, minimizing both at the same time leads to 

accomplishing the benefits of both measures (efficiency and cost reduction). 

This paper aims to solve a Flowshop Manufacturing Cell (cellular flowshop) 

Scheduling Problem with Sequence Dependent Setup Times (FMCSP with 

SDSTs). Scheduling a flowshop of cellular manufacturing systems with 

family setup times was studied for the first time by Schaller, Gupta, and 
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Vakharia (Schaller et al., 2000), they developed several heuristic algorithms 

with minimization of the makespan as the criterion.  (Li et al., 2014) 

considered the FMCSP with SDSTs for total tardiness and mean total flow 

time minimization. Hendizadeh et al (Hendizadeh et al., 2007) and  (S. W. 

Lin & Ying, 2012) studied the proposed problem to minimize makespan and 

total flow time as a bi-criteria scheduling problem. The former studied the 

problem for the first time, and they developed a Multi-Objective Genetic 

Algorithm (MOGA) to optimize the total flow time and makespan 

simultaneously. They compared their results to the lower bounded proposed 

by Schaller (Schaller, 2001) for makespan criterion. The latter developed a 

two-level multistar simulated annealing (TLMSA) for the same problem to 

minimize makespan and total flow time (or total tardiness). As a result of the 

limited work done on the proposed problem, the author has been motivated 

to develop two multi-objective algorithms to generate approximated Pareto 

fronts for the proposed problem. The convergence and the diversity of the 

generated Pareto fronts are evaluated based on QI measures rather than the 

deviation from the lower bound. 

II. PROBLEM DEFINITION 

In a cellular manufacturing environment, machines are grouped into cells. 

Each cell is dedicated to the production of a specific part family. A cell 

consists of machines or workstations, arranged in a processing sequence. 

In FMCSP, there are N0 jobs which are grouped according to their 

similarity and production requirements. Therefore, there are F part 
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families {1,2,....,F} to be processed in a cell that has m machines 

{M1,M2,...,Mm}. The ultimate goal is to find the best sequence of 

processing the part families as well as jobs within each family to 

minimize the total flow time and makespan simultaneously. Using the 

triplet notation (Pinedo, 2012). The problem can be notated as:𝐹𝑚\

𝑓𝑚𝑙𝑠, 𝑆𝑒𝑙𝑘𝑖 , 𝑝𝑟𝑢𝑚\𝐶𝑚𝑎𝑥 ∑ 𝐶𝑗
𝑁
𝑗=1 .  

The solution of the studied problem is achieved in two phases or levels: 

1) Sequencing of part families 

2) Sequencing of jobs within each part family 

The solution representation consists of F + 1 segments; the first segment F 

represents the sequence of part families on each machine, the other segments 

correspond to the sequence of jobs within each part family (Bouabda, 

Jarboui, Eddaly, et al., 2011), (Eddaly et al., 2009a), (Eddaly et al., 2009b), 

(Hamed Hendizadeh et al., 2008), (S.-W. Lin et al., 2009), (Salmasi et al., 

2010), (Salmasi et al., 2011),  and (Bouabda, Jarboui, & Rebai, 2011). The 

sequence of part families and the parts within each part family are the same 

on all machines (permutation flowshop). For a feasible schedule, a solution 

π of FMCSP takes the following structure Fig.1  

 

where 

 

is the sequence of the jobs in each part family. 
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Fig. 1. The solution structure.(Bouabda, Jarboui, & Rebai, 2011) 

The proposed problem is an NP-hard problem. Research effort has focused 

on finding the approximation algorithms that can provide a near-optimal 

solution at a relatively minor computational expense. Most of the currently 

available algorithms only deal with the optimization of a single criterion 

measure. Therefore, the author is motivated to develop two multi-objective 

algorithms to generate approximated Pareto fronts for the proposed problem. 

The convergence and the diversity of the generated Pareto fronts are 

evaluated based on QI measures rather than the deviation from the lower 

bound. A multi-objective Particle Swarm Optimization (MPSO) and a Multi-

objective Simulated Annealing (MOSA) Algorithm are further proposed to 

solve the bi-criteria optimization problem to minimize the total flow time and 

makespan simultaneously. Furthermore, an improved PSO is combined with 

Threshold Acceptance (TA) algorithm to improve effectiveness of the 

proposed MPSO (named as IMPSO-TA) for the convergence of the obtained 
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Pareto Front. The proposed algorithms are evaluated using several Quality 

Indicators (QI) measures for multiobjective optimization problems. The 

proposed algorithms can generate approximated Pareto Fronts in a reasonable 

CPU time. The proposed IMPSO-SA outperforms MOSA algorithm in terms 

of CPU time and minimize the objective functions. 

III. PRINCIPLES OF MULTI-OBJECTIVE OPTIMIZATION 

PROBLEM (MOP) 

MOP is defined as a vector of decision variables which satisfies constraints 

within a feasible region to optimize a vector of objective functions (Mansouri 

et al., 2009). Unlike mono objective, there is a set of solutions called Pareto 

solutions or Pareto front which is found using Pareto Optimality Theory 

(Coello et al., 2007). A general multi-objective optimization problem 

includes a set of n parameters (decision variables), a set of M objectives, and 

a set of k constraints. Objective functions and constraints are functions of the 

decision variables. In general, the minimization problem of m objectives can 

be presented as follows:  

Minimize fm(x), m = 1,...,M. 

subject to 

gj(x) ≤ 0, j = 1,...,k. 

hl(x) ≤ 0, l = 1,...,p.  (1) 

fi(x)is the ith objective function; gj(x) and hl(x) are inequality constraint 

and equality constraints respectively. 
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A. Pareto Dominance 

The optimal solutions in multi-objective optimization problem can be 

defined based on the concept of domination. The definition of the non-

dominated set or Pareto front can be defined as follows: 

A solution x[1] is said to dominate other solution x[2]; if both of the 

following conditions are true: 

1) The solution x[1] is no worse than x[2] in all objectives. Thus, the 

solutions are compared based on their objective function values. 

2) The solution x[1] is strictly better than x[2] in at least one objective. 

 

fi(x) ≤ fi(y) ∀i ∈ 1,...,M. (2) 

and 

                      ∃i ∈ {1,...,M} : fi(x) < fi(y)             (3) 

All decision vectors that are not dominated by any other feasible decision 

vector are called non-dominated sets or front (Pareto-optimal set). 

Achieving the exact Pareto front of an arbitrary problem is usually quite 

difficult. Nevertheless, reasonably good approximations of true Pareto 

Front are generally acceptable within a limited computational time 

(Coello et al., 2007). Thus, the goal for multi-objective optimization 

problem is to find a set of solutions which lie on the Pareto front and find 
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a set of solutions which are diverse enough to represent the entire range 

of the Pareto front. 

IV.PROPOSED ALGORITHMS     

In designing metaheuristics, two conflicting criteria must be considered: 

exploration of the search space (diversification) and exploitation of the 

best solutions found (intensification) (Talbi, 2009). Promising regions are 

determined by the obtained good solutions. On one hand, in 

intensification, the promising regions are explored more thoroughly in the 

hope to find better solutions. On the other hand, in diversification non-

explored regions have been visited to be sure that all the regions of the 

search space are explored. Therefore, the proposed algorithm should 

compromise and balance between diversification and intensification 

criteria. Moreover, hybridization is implemented to balance between 

these criteria and to manage the cooperation between the operation of the 

search among the candidate solutions (populations or swarms), a 

diversifying agent, and the intensifying agent. 

In fact, two major challenges must be addressed when an evolutionary 

algorithm is applied to multi-objective optimization: First challenge is to 

accomplish fitness assignment and selection to guide the search towards the 

Pareto front. The second challenge is to maintain a diverse population in 

order to prevent premature convergence and achieve a well distributed and 

well spread nondominated set (Zitzler et al., 2000). Metaheuristics based on 

MPSO, MOSA, and IMPSO are proposed to generate the approximated 
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Pareto front sets. First, the MPSO algorithm is developed to minimize the 

total flow time and makespan in a cellular flowshop scheduling problem. 

Then, a Multi-Objective simulated annealing algorithm is developed to solve 

the same problem. Lastly, a hybrid algorithm based on an Improved Multi-

objective Particle Swarm Optimization (named IMPSOTA) is proposed. In 

this algorithm, IMPSO proposed by (Zhao et al., 2014) is combined with 

(TA) algorithm proposed by (Dueck & Scheuer, 1990) as local search engine 

to provide efficient Pareto fronts. The analysis of the performance of the 

proposed MPSO, MOSA, and IMPSO algorithms will be discussed in detail. 

Moreover, QI measures are used to evaluate the effectiveness of the proposed 

algorithms. 

A. Particle Swarm Optimization 

Simply, PSO algorithm simulates birds swarm behaviour, and makes every 

particle in the swarm move according to its experience and the best particles 

experience to find a better new position. After the evolution, the best particle 

in the swarm is seen as the best solution for the input problem. The population 

of PSO is called swarm, and each individual or particle which is a potential 

solution is known with its current position and current velocity. The new 

position of each individual particle is obtained by assigning a new position 

as well as a new velocity to the particle. Each particle gains a different 

position, and the value of each position is evaluated based on the value of the 

objective function. The main advantage of this approach is that every particle 

always remembers its best position in the experience. When a particle moves 
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to another position, it must refer to its best experience and the best experience 

of all particles in the swarm. The best position of each particle that has been 

gained so far during the previous steps is called the best particle (p-best). The 

best position gained by all particles so far is called the global best (g-best). 

The new position as well as the new velocity of each particle are obtained 

based on the previous positions, the pbest, and the g-best. 

Considering an n-dimension search space, there are S particles (swarm size) 

cooperating to find the global optimum in the search space. In a swarm of S 

particles, the ith particle is associated with the position vector {xi1,xi2,.......,xin} 

and the velocity {vi1,vi2,.......,vin}. The p-best and g-best are updated each 

iteration based on generation of new swarms. Each particle uses its own 

search experience and the global experience by the swarm to update the 

velocity and flies to a new position based on the following equations: 

                    

 xj(t + 1) = vj(t + 1) + xj(t)       (5) 

Where w is the inertia weight, it controls the influence of the previous 

velocity of particles, C1 and C2 are called acceleration coefficients that 

provide weight to the social influence. The parameters r1 and r2 are 

uniformly distributed random variables in the range between [0,1]. For 

the tth iteration, Pi
t and Gt are the p-best (for ith particle) and gbest particles 

respectively. The values of these parameters are updated in each iteration 

based on the following equations: 
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  (6) 

  (7) 

  (8) 

TABLE I 

THE MAXIMUM AND MINIMUM VALUES OF PSO 

PARAMETERS 

Parameter. Max. 

values 

Min. values 

W 2 0.4 

C1 2 0.4 

C2 2 0.4 

Position value 0 4 

Velocity -4 4 

 

In the area of multi-objective optimization problems, PSO is attracting 

much research interest because of the simple computational model 

introduced by PSO and exploration capabilities of the algorithm 

(Elhossini et al., 2010). In the PSO algorithms for mono objective 

optimizations, determination of local and global best particles is based on 
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the extreme value of the objective function. However, in multi-objective 

optimizations problems, each particle might have a set of different g-bests 

from which just one can be selected in order to update its position. This 

set of g-bests is usually stored in a different place from the swarm that is 

called external archive named as {NDS} set. This is an externally stored 

archive or elite set that was used to store the non-dominated solutions 

found so far. The set of solutions contained in the external archive. Global 

best (g-best) particle is randomly selected from an external archive. 

Velocities and Positions of particles are updated each iteration. Solutions 

are updated according to the non-domination check, and stored in the 

external archive. The final set of non-dominated solutions in the external 

archive is reported as the final output of the algorithm. 

B.Initialization 

The MPSO algorithm starts by randomly generating several particles X0 = 

{x1,.....,xN} (subscript 0 refers to initial state before starting iterations) where 

N is the swarm size. Each particle is considered as a potential solution that 

refers to the sequence of the families and jobs in each family. Initial position 

and velocity of particles are determined using the following equations: 

Xoi =Xmin + C1 (Xmax – Xmin )   (9) 

V0,I = Vmin + C2 (Vmax -Vmin )   (10) 

 

where i ∈ {1,2,......N}, Xmin and Xmax represent the minimum and maximum 

position values respectively. Vmin and Vmax represent the minimum and 



 

Solving a Bi-criteria Scheduling Problem of cellular Flowshop with…..(573 -628) 

 

606 

Azzaytuna University Journal  (44)   Dec. 2022 

 

maximum velocities respectively. C1 and C2 are random variables in the range 

[0,1]. The values of these parameters are given in Table I. 

C. Pareto Search 

After initializing the first swarm, an External Archive is defined to store the 

Non-dominated Solution Set (NDS) or the Pareto front. This archive (named 

as NDS-Set) will be filled by initial non-dominated solution obtained from 

the initial swarm. In the tth iteration (t > 0), the velocity and the position are 

updated based on the following equations: 

 

                                                  (12) 

Where w is the inertia weight that controls the influence of the previous 

velocity of particles, r1 and r2 are uniformly distributed random variables in 

the range [0,1], C1 and C2 

are the acceleration constants. The values of these constants are updated 

according to the equations 6, 7, and 8. Unlike the standard PSO for single 

objective problem, g-best (Gt) at the tth iteration is selected randomly from 

NDS. They guide every particle toward the local best and the global best 

solutions during the search process. The Ranked Order Value (ROV) (Kuo 

et al., 2009) is applied to find the sequence of the families as well as the jobs 

in each family. This procedure will be repeated till the maximum number of 

iterations is reached. The final NDS archive will be reported as a final 

solution of the Pareto front. The algorithm is outlined in Algorithm 1. Note 
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that the p-best, and g-best are calculated to update the velocity of the particles 

in the swarm for the next iteration.  

The maximum and minimum values of the above parameters are presented 

in Table I, where I is the current iteration, maxI is the pre-set value of 

maximum number of iterations, and is constant equal to 10. Particles fly in 

the search space based on equation (4), and equation (5). Every particle 

always remembers its best position in the experience. When a particle moves 

to another position, new velocity is calculated according to the previous 

velocity and the distance of its position from both p-best and g-best. 

However, the new velocity is limited to the range to control the extreme 

traveling of particles outside the search space. Particles gain their new 

positions according Algorithm 1  

Algorithm1: The steps of the proposed MPSO algorithm 

Require: Initialize parameters:{swarm size, n, maximum IterationImax, 

C1max,C1min, 

C2max,C2min,Vmax,Vmin,Wmax,Wmin,Xmax,Xmin} 

• Step 1: Set iteration t = 0 

• Step 2: If t = 0 Generate initial positions Xi
t and Vi

t initial 

velocities for i ∈ {1,2,....,n} according to equations (9, and 10) 

Else 

Generate a new swarm by updating the velocity Vi
t and position Xi

t of 

particles according to equations (11, and 12) 
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• Step 3: Set the initial Non Dominated Set NDS = {} (The Null 

Set) 

• Step 4: Apply the (ROV) on Xi
t to find the sequence of families as 

well as jobs in families. 

• Step 5: Calculate the objective function fTFT (Xi
t) and fMS (Xi

t) for 

each particle i ∈ {1,2,....,n} 

• Step 6: Check whether the particle  qualifies to be included in 

NDS o Step 6.1 For each particle in the swarm the p-best  is 

calculated as: 

 Pi
t = argminj f(Xi

j) for j ∈ {1,2,....,t} X 

 

• Step 6.2 The g-best Gt is randomly selected from 

the NDS set. 

• Step 7 Set t = t + 1 

• Step 8 If t = Imax , STOP; and set NDSImax as the 

Pareto front; else, go to step 2. 

The new velocity and the previous position equation (4) and equation (5) 

(Liu et al., 2008). implemented Ranked Order Value (ROV) to convert 

the continuous position value of the particles to job sequence to solve 

permutation flowshop scheduling problem. In this study, ROV is 

implemented to convert the position of particles to part families 



 

Solving a Bi-criteria Scheduling Problem of cellular Flowshop with…..(573 -628) 

 

609 

Azzaytuna University Journal  (44)   Dec. 2022 

 

sequences as well the sequence of jobs in each part family (Salmasi et al., 

2010). 

V. MULTI-OBJECTIVE SIMULATED ANNEALING 

ALGORITHM 

SA is often distinguished from the evolutionary algorithms that are used 

in solving the multi-objective optimization problems because SA does not 

involve candidate solutions (Simon, 2013). Yet, MOSA has been 

proposed to solve the multi-objective optimization problems. For 

instance, the two-machine flowshop scheduling problem is addressed by 

(Mansouri, 2005) to minimize setups and makespan. SA algorithm 

provides excellent solutions to single and multiple objective optimization 

problems with a substantial reduction in computation time (Suman & 

Kumar, 2005). Pareto SA was presented by (Czyzżak & Jaszkiewicz, 

1998) to generate an approximation of the Pareto front for multiple 

objective combinatorial optimization. Furthermore, the problem of 

permutation flowshop scheduling is considered by (Varadharajan & 

Rajendran, 2005), in which they presented MOSA algorithm with the 

objectives of minimizing the makespan and total flow time of jobs. The 

proposed MOSA mainly consists of the following steps: first, initialize 

the search parameter, and generate the initial Non-dominating Solutions 

(NDS) or the Elite set. Second, generate neighbourhood solutions. Lastly, 

implement the nondomination check of the new solutions, and update 

NDS set. The algorithm is given in Algorithm 2. 
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A. Initial Solutions 

A number of initial solutions are randomly generated after setting the search 

parameters are selected; the combination of the parameters were as follows: 

Iiter = 150, T0 = 20, Tf = 1, α =0.95, Nnon−imp. = 15. Cauchy function is used in 

the annealing process that gives the SA more chances to escape from local 

minima. The non-dominated check is implemented to specify the initial 

Pareto set that would be updated based on the neighbourhood generation in 

the sequence of the families as well as the jobs in each family. 

B. Neighbourhood Generation 

Two common methods were used in generating the new solution: Swapping, 

and Insertion. For a given a sequence(π), the set of families and jobs in each 

family can be obtained from the current sequence π using the swapping and 

insertion as follows: 

• Swapping: let j,k be two positions in the sequence π, which are selected 

randomly. For example, consider a neighbor of (π). Swapping is obtained 

by interchanging the jobs in the positions j and k. For instance if π = 

(5,2,3,4,1,6) and j = 2, k = 4, then a neighbor of (π) will be: (5,4,3,2,1,6). 

• Insertion: let j and k be two positions in the sequence (π) which are 

selected randomly. A neighbor of (π) is obtained by inserting the job of 

position j to the position k pushing the jobs in between these positions 

backward (forward), including the job of position j, if k is greater. 

(or less) than j. For example if π = (5,2,3,4,1,6) and j = 2, k = 4, then the 

neighbour of π will be: (5,3,4,2,1,6). If j = 4, k= 2, then the neighbour of π 
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will be: (5,4,2,3,1,6). For a given sequence of the families, and jobs in each 

family. A family f is selected randomly for swapping and insertion methods; 

the job sequence of the selected family is changed using swapping and 

insertion. Then, sequence of families is changed to pick another family for 

swapping and insertion for a several of iterations. 

C. An Improved Multi-objective Particle Swarm Optimization (IMPSO) 

The performance of classic PSO like all evolutional algorithms depends on 

the search parameters. Further, it often suffers from problem of premature 

convergence that might be because of being trapped in local optima. The 

probability of being trapped into the local optima can be reduced by 

improving the ability of particles to explore the global and Algorithm 2. 

 Algorithm2: The steps of the proposed MOSA algorithm 

Required: Initialize the search parameters { T0,TF, α = 0.95,Iiter, 

Nnon−imp.} 

• Step 1: Generate initial population (pop) solutions randomly, 

initialize NDS = {}; 

• Step 2: Do the non-dominated check on the population and update 

the NDS set. 

• Step 3: Set Solution X (randomly selected from initial population) 

to be the current solution. 

• Step 4: Set obj1 = TFT; and obj2 = MS • Step 5: For F=1 to Family 

size 



 

Solving a Bi-criteria Scheduling Problem of cellular Flowshop with…..(573 -628) 

 

612 

Azzaytuna University Journal  (44)   Dec. 2022 

 

Set T = T0 , No. of Moves = 1, counter = 1 o Step 5.1: while T > TF

 do: 

o Step 5.2: Generate a new neighbour solution Y 

from current solution X by minor swapping on job sequence of Fth family 

F 

o Step 5.3: Generate a random number RN uniformly between 0 

and 1, and calculate: 

4E1 = obj1(Y ) − obj1(X) ; 4E2 = obj2(Y ) − obj2(X) 

IF 4E1 ≤ 0, and 4E2 ≤ 0 then X=Y; 

IF 4E1 > 0, and 4E2 ≤ 0 ; 

IF  

ELSE No. of Moves = No. of Moves + 1; 

ELSE IF 4E1 ≤ 0, and 4E2 > 0 ; 

IF o Step 5.4: Do non-dominated check with 

the possibility of in the population and update NDS 

 o Step 5.5:IF (counter = Iiter, OR No. of Moves 

=Nnon−imp. ) 

T= αT 

Iiter=0; 

No. of Moves =0; 

 ELSE counter = counter+1; 

• Step 6: Return the NDS as the final solution set (Pareto front) local 

optimization solutions.  
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The Decline Disturbance Index (DDI) proposed by  (Zhao et al., 2014) is 

applied to enhance the ability of particles to explore the global and local 

optimization solutions. The DDI is added to improve the updating 

velocity formula. 

Therefore, the new formula for the velocity will be as follows: 

 

                                                       (14) 

Where j ∈ {1,2,....,n}, t ∈ {1,2,....,Imax}, Pj
t is the best for the jth particle 

and the ith iteration, Gt is the g-best till the tth iteration, l = −d1(x − d2) is a 

linear decline function controlled by parameters d1 and d2 with xt4(x). 

Both d1 and d2 are small parameters that can be set dynamically, t is the 

iteration index, and 4(x) is an interval whose length can be adjusted 

according to the objective functions. During the evolution process of the 

algorithm, the DDI declines at a certain rate, and has minimal impact on 

the evolution of the particles at last, thus, increasing the chance of 

convergence to an optimum solution (Zhao et al., 2014). 

D. Local Search based on Threshold Acceptance (LS-TA) 

The ultimate goal of any search strategy is to find an optimal or a near-

optimal solution. Local search or Memetic Algorithms (MAs) are usually 

implemented due to the simple and successful application of these algorithms 

to various optimization problems. Ishibuchi et al presented the first MA 

algorithm named as a multiobjective genetic local search approach. They 
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implemented the local search algorithm for multi-objective flowshop 

scheduling problems and they concluded that a high performance is 

demonstrated by applying the local search to multi-objective flowshop 

scheduling problems (Ishibuchi & Murata, 1998). Knowles et al provided a 

simple framework that guides for designing MAs for MOPs (Knowles & 

Corne, 2005). A local search method based on TA is implemented to enhance 

the g-best after generating the initial swarm to improve the intensification. 

Due to the computational time advantage, TA is implemented to improve the 

quality of Pareto sets obtained by MPSO by guiding the g-best to the 

promising regions. Basically, TA escapes from local optima by accepting 

solutions that are not worse than the current by more than a given threshold 

(Talbi, 2009).  

The pseudo code of the LS-TA approach is shown in Algorithm 3. 

Algorithm 3: The Pseudo code for Loacl Search Threshold Acceptance 

algorithm LS-TA 

Require: Initializethe search parameters {Iiter, Nnon−imp.,Familysize} 

• Step 1: Set Solution X to be the current 

• Step 2: Set obj1 = TFT; and obj2 = MS • Step 3: For F=1 to Family 

size 

Set No. of Moves =1, and counter = 1 

• Step 4 while counter < Iiter 

• Step 4: Generate a new neighbour solution Y from current solution 

X by minor swapping on the job sequence of family F 
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• Step 5: Calculate: 4E1 = obj1(Y )−obj1(X) ; 4E2 = obj2(Y ) − obj2(X) 

• Step 6: Generate a random number RN uniformly between 0 and 1: 

IF 4E1 ≤ 0 , and 4E2 ≤ 0; then X = Y 

Else 4E > 0, and 4E ≤ 0 ; 

 IF  

else No. of Moves = No. of Moves + 1; Else 4E ≤ 0, and 4E > 0 ; 

 IF  

else No. of Moves = No. of Moves + 1; 

• Step 7 IF (No. of Moves =Nnon−imp. ) 

counter = counter+1; 

VI. THE PROPOSED IMPSO-TA ALGORITHM 

The proposed IMPSO-TA is like MPSO (Algorithm1). The velocity and 

position of each particle are updated according to equations 13 and 14. 

Local search algorithm is inserted in each swarm to increase the chance of 

getting g-best in promising regions, and to enhance the quality of the g-best. 

TA (Algorithm 3) is combined with IMPSO to form a hybrid algorithm 

named as IMPSO-TA to solve FMCSP with SDSTs to minimize TFT and 

MS simultaneously. Therefore, the overall steps of IMPSO-TA is shown in 

Algorithm 4. 

Algorithm 4: The steps of proposed IMPSO-TA algorithm 

Require: Initialize parameters { swarm size n, maximum Iteration Imax, 

C1max,C1min, 

C2max,C2min,Vmax,Vmin,Wmax,Wmin,Xmax,Xmin} 
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• Step 1: Set iteration t = 0 

• Step 2: If t = 0 

o Generate initial positions initial velocities for i ∈ {1,2,....,n} 

according to equations (9, and 

10) 

Else o Generate a new swarm by updating the velocity  

and position  of particles according to equations (13, and 14) 

• Step 3: Set the initial Non Dominated Set NDS = {} (The Null Set) 

• Step 4: Apply the (ROV) on Xi
t to find the sequence of families as 

well as jobs in families. 

• Step 5: Calculate the objective function fTFT (Xi
t) and fMS (Xi

t)for each 

particle i ∈ {1,2,....,n} 

• Step 6: Check whether the particle (Xi
t) qualifies to be included in 

NDS 

• Step 7 Implementing the local search LS − TA o Step 7.1 For each 

particle in the swarm the p-best (Pi
t) is calculated as: 

= argmin  

 

o Step 7.2 For j = {1,2,....,NDS}, 

Gt = LS − TA(Gt) 

o Step 7.3 Do the non-dominated check (Section 
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5.2.1), and update the NDS o Step 7.4 The g-best Gt is randomly selected 

from 

the NDS set. 

• Step 8 Set t = t + 1 

• Step 9 If t = Imax , STOP; and set NDSImax as the 

Pareto front; else, go to step 2. 

VII. COMPUTATIONAL RESULTS AND DISCUSSION 

The proposed algorithms: MPSO, MOSA, and IMPSO-TA are coded 

using C++ language and run on a PC with an Intel core I7 (2.93 GHz) 

CPU and 4.0 GB memory. The performance of the proposed algorithms 

are tested using test problems proposed by Schaller (Schaller, 2001). The 

obtained Pareto fronts are compared and evaluated based on lower 

bounds. MPSO-TA showed a better performance than MPSO, and 

MOSA. As shown in Figure 2, the obtained Pareto fronts obtained by 

IMPSO-TA is much better than other algorithms especially for small a 

compared with Pareto fronts found by MOSA, and in Figure 3 MPSO-TA 

shows better results even for the large problems. 
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Fig. 2. The percentage deviation from makespan for small test problems 

 

Fig. 3. The percentage deviation from makespan for large test problems 

VIII. PERFORMANCE MEASURES BASED ON QUALITY 

INDICATORS 

Unlike the single objective optimization, there are several Quality Indicators 

(QI) often used to evaluate the quality of NDS. These performance indicators 

are widely used in practice. In this work, the QIs listed below are calculated 
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using the C++ code; results are showed that the proposed algorithms have 

generated Parto fronts; yet, the IMPSO-TA has the superiority over the 

MPSO algorithm especially in large sized problems 2 

1) Number of Non-dominated solutions 

The first quality measure used in this research is how many non-dominated 

solutions in a Pareto front. Let NDS1 is the Pareto set generated by IMPSO-

TA algorithm. The size of this set is X1. Similarly, X2 is the size of Pareto set 

obtained by using MOSA algorithm.  

2) Percentage of non-dominated solutions 

The ratio between the sizes of NDS in each set is calculated (X1/X2) to indicate 

which algorithm generates more non-dominated solutions. 

3) Coverage index (CM) 

For the two different non-dominated solution sets X and X0, consider a 

mapping (X,X0) → [0,1] where x ∈ X, and x0 ∈ X0 . If a solution a 

dominates a solution b , that means b ≺ a , then the CM is defined by: 

 

If all the solutions in X0 were dominated by the solutions in X, then 

CM(X,X0) = 1; on the contrary, if all the solutions in X were dominated 

by the solutions in X0 , then CM(X,X0) = 0. 

4) Dave and Dmax 

The performance measure Dav is defined as: 
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 (16) 

Dmax is defined as: 

 

where 

 

5) Spacing Distance measure 

Multi-objective evolutionary methods aim to minimize the distance 

between the obtained solution and the true Pareto front (Tan et al., 2006). 

The Spacing Distance (SD) measures the uniformity spread of solutions 

over the approximated Pareto front. For non-dominated solutions set, SD 

metric is calculated using the following equation: 

(19) 

where  is the Euclidean distance between solution  and 

the nearest solution in the space. X is the number of the non-dominated 

solution in the Pareto front. The smaller of the SD, the superior of the 

solution distribution is. 

6) Quality Index measure 

Quality index QI is used to compare the obtained Pareto front with the 

true Pareto front. Since there is no true Pareto front for the studied 
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problem, the Pareto fronts found by IMPSO-TA and the MPSO are 

compared using QI. Quality index can be calculated using the following 

formula: 

 , 

A. Discussion of the quality measures results 

The results of the performance evaluation based on the QI for small, medium, 

and large test problems showed that the number of non-dominated solutions 

(NDS), in most cases the average number of non-dominated solutions found 

by IMPSOTA is greater than the obtained solutions by MOSA. Furthermore, 

the results of CM metric indicate that solutions found by MOSA are 

dominated by the one obtained by IMPSOTA (CM = 0). Therefore, quality 

of Pareto fronts found by IMPSO-TA is better than Pareto fronts generated 

by MOSA algorithm. For instance, the divergence between the proposed 

algorithms is shown in Figure 4 for one of the small instances, and Figure 5 

for medium problem size. In addition, as shown in Figure 6, the variation 

between the obtained Pareto fronts is increased as the problem size is 

increased. Yet, the variation is less for small size instances as shown in Figure 

4. Furthermore, the Pareto fronts generated by IMPSO-TA is better than that 

of MOSA in terms of average distance Daveand as well as in terms of 

maximum distance (Dmax). QI metric is introduced to evaluate the 
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performance between proposed algorithms for multi-objective problem. It is 

obvious that QI computed by IMPSO-TA is smaller than that of MOSA, 

which states that the overall performance for Pareto optimal from IMPSO is 

better than the ones that obtained by PSO and MOSA. We can conclude that 

IMPSO-TA is an effective algorithm to solve the bi-criteria scheduling 

problem of flowshop manufacturing cell with sequence dependent setup 

times than MPOS, and MOSA algorithms in terms of the quality of the 

solutions. 

 

Fig. 4. Pareto fronts obtained by MOSA and IMPSO-TA (SSU34) 

 

Fig. 5. Pareto fronts obtained by MOSA and IMPSO-TA (LSU66) 



 

Solving a Bi-criteria Scheduling Problem of cellular Flowshop with…..(573 -628) 

 

623 

Azzaytuna University Journal  (44)   Dec. 2022 

 

 

Fig. 6. Pareto fronts obtained by MOSA and IMPSO-TA (LSU88) 

IX. CONCLUSIONS 

Scheduling optimization of a FMCSP with SDSTs is studied to minimize 

the total flow time and makespan at the same time. An approximation of 

true Pareto Fronts are generated within a limited computational time. 

Multi-objectives algorithms based on MPSO, MOSA, and IMPSO-TA 

are proposed to find a 

set of solutions which lie on the Pareto front sets; proposed algorithms 

are evaluated and tested using the well-known test problems developed 

by (Schaller, 2001). Furthermore, the performance of the proposed 

algorithms is evaluated using several Quality indicator that are used to 

assess the best convergence and the diversity of the Pareto fronts. Results 

indicate that quality of Pareto fronts generated by IMPSO-TA is better 

than Pareto fronts found by MPSO and MOSA based on the test problems 

that are used in this study at the cost of CPU time. Further, the proposed 

IMPSO-TA performs as best available algorithms in the literature for 

small, medium, and large test problems. 
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